Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Sep 1;101(3):993–1000. doi: 10.1083/jcb.101.3.993

Reciprocal transmembranous receptor-cytoskeleton interactions in concanavalin A-activated platelets

PMCID: PMC2113701  PMID: 2993319

Abstract

Concanavalin A (Con A) has been used to activate platelets, inducing a specific interaction between the glycoprotein IIb-IIIa complex and the cytoskeleton of the activated platelet. In agreement with this, we have shown that Con A activates human platelets, initiating phosphorylation, secretion, and cytoskeletal formation. Con A and cytochalasin B were used to demonstrate a reciprocal interaction of the glycoprotein complex with the platelet cytoskeleton. Additionally, we have shown that a similar reciprocity is provided by the multivalent fibrin- fibrinogen platelet interaction found in the thrombin-induced clot. Con A differs from other activators in precipitating an apparent cytoskeletal core despite a complete inhibition of platelet activation by prostaglandin E1. We suggest, from this result, that Con A may be cross-linking a membrane-associated cytoskeletal complex present in the unactivated platelet.

Full Text

The Full Text of this article is available as a PDF (965.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash J. F., Singer S. J. Concanavalin-A-induced transmembrane linkage of concanavalin A surface receptors to intracellular myosin-containing filaments. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4575–4579. doi: 10.1073/pnas.73.12.4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett W. F., Belville J. S., Lynch G. A study of protein phosphorylation in shape change and Ca++-dependent serotonin release by blood platelets. Cell. 1979 Dec;18(4):1015–1023. doi: 10.1016/0092-8674(79)90214-9. [DOI] [PubMed] [Google Scholar]
  3. Benton A. M., Gerrard J. M., Michiel T., Kindom S. E. Are lysophosphatidic acids or phosphatidic acids involved in stimulus activation coupling in platelets? Blood. 1982 Sep;60(3):642–649. [PubMed] [Google Scholar]
  4. Carroll R. C., Gerrard J. M. Phosphorylation of platelet actin-binding protein during platelet activation. Blood. 1982 Mar;59(3):466–471. [PubMed] [Google Scholar]
  5. Cox A. C., Carroll R. C., White J. G., Rao G. H. Recycling of platelet phosphorylation and cytoskeletal assembly. J Cell Biol. 1984 Jan;98(1):8–15. doi: 10.1083/jcb.98.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniel J. L., Molish I. R., Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem. 1981 Jul 25;256(14):7510–7514. [PubMed] [Google Scholar]
  7. Fattoum A., Hartwig J. H., Stossel T. P. Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry. 1983 Mar 1;22(5):1187–1193. doi: 10.1021/bi00274a031. [DOI] [PubMed] [Google Scholar]
  8. Feinstein M. B., Egan J. J., Opas E. E. Reversal of thrombin-induced myosin phosphorylation and the assembly of cytoskeletal structures in platelets by the adenylate cyclase stimulants prostaglandin D2 and forskolin. J Biol Chem. 1983 Jan 25;258(2):1260–1267. [PubMed] [Google Scholar]
  9. Fox J. E., Boyles J. K., Reynolds C. C., Phillips D. R. Actin filament content and organization in unstimulated platelets. J Cell Biol. 1984 Jun;98(6):1985–1991. doi: 10.1083/jcb.98.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fox J. E., Phillips D. R. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem. 1982 Apr 25;257(8):4120–4126. [PubMed] [Google Scholar]
  11. Fox J. E., Say A. K., Haslam R. J. Subcellular distribution of the different platelet proteins phosphorylated on exposure of intact platelets to ionophore A23187 or to prostaglandin E1. Possible role of a membrane phosphopolypeptide in the regulation of calcium-ion transport. Biochem J. 1979 Dec 15;184(3):651–661. doi: 10.1042/bj1840651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerrard J. M., Kindom S. E., Peterson D. A., Peller J., Krantz K. E., White J. G. Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux. Am J Pathol. 1979 Aug;96(2):423–438. [PMC free article] [PubMed] [Google Scholar]
  13. Gonnella P. A., Nachmias V. T. Platelet activation and microfilament bundling. J Cell Biol. 1981 Apr;89(1):146–151. doi: 10.1083/jcb.89.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graber S. E., Hawiger J. Evidence that changes in platelet cyclic AMP levels regulate the fibrinogen receptor on human platelets. J Biol Chem. 1982 Dec 25;257(24):14606–14609. [PubMed] [Google Scholar]
  15. Harris H. E., Weeds A. G. Platelet actin: sub-cellular distribution and association with profilin. FEBS Lett. 1978 Jun 1;90(1):84–88. doi: 10.1016/0014-5793(78)80303-2. [DOI] [PubMed] [Google Scholar]
  16. Hartwig J. H., Tyler J., Stossel T. P. Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J Cell Biol. 1980 Dec;87(3 Pt 1):841–848. doi: 10.1083/jcb.87.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jung G., Helm R. M., Carraway C. A., Carraway K. L. Mechanism of concanavalin A-induced anchorage of the major cell surface glycoproteins to the submembrane cytoskeleton in 13762 ascites mammary adenocarcinoma cells. J Cell Biol. 1984 Jan;98(1):179–187. doi: 10.1083/jcb.98.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawahara Y., Yamanishi J., Furuta Y., Kaibuchi K., Takai Y., Fukuzaki H. Elevation of cytoplasmic free calcium concentration by stable thromboxane A2 analogue in human platelets. Biochem Biophys Res Commun. 1983 Dec 28;117(3):663–669. doi: 10.1016/0006-291x(83)91648-0. [DOI] [PubMed] [Google Scholar]
  19. Kawamoto S., Hidaka H. Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins. Biochem Biophys Res Commun. 1984 Feb 14;118(3):736–742. doi: 10.1016/0006-291x(84)91456-6. [DOI] [PubMed] [Google Scholar]
  20. Kurth M. C., Bryan J. Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin. J Biol Chem. 1984 Jun 25;259(12):7473–7479. [PubMed] [Google Scholar]
  21. Langer B. G., Gonnella P. A., Nachmias V. T. alpha-Actinin and vinculin in normal and thrombasthenic platelets. Blood. 1984 Mar;63(3):606–614. [PubMed] [Google Scholar]
  22. Lapetina E. G., Watson S. P., Cuatrecasas P. myo-Inositol 1,4,5-trisphosphate stimulates protein phosphorylation in saponin-permeabilized human platelets. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7431–7435. doi: 10.1073/pnas.81.23.7431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lind S. E., Stossel T. P. The microfilament network of the platelet. Prog Hemost Thromb. 1982;6:63–84. [PubMed] [Google Scholar]
  24. Lyons R. M., Atherton R. M. Characterization of a platelet protein phosphorylated during the thrombin-induced release reaction. Biochemistry. 1979 Feb 6;18(3):544–552. doi: 10.1021/bi00570a025. [DOI] [PubMed] [Google Scholar]
  25. Marcus A. J. The role of lipids in platelet function: with particular reference to the arachidonic acid pathway. J Lipid Res. 1978 Sep;19(7):793–826. [PubMed] [Google Scholar]
  26. Markey F., Persson T., Lindberg U. Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor. Cell. 1981 Jan;23(1):145–153. doi: 10.1016/0092-8674(81)90279-8. [DOI] [PubMed] [Google Scholar]
  27. McGregor J. L., Clemetson K. J., James E., Greenland T., Dechavanne M. Identification of human platelet glycoproteins in SDS-polyacrylamide gels using 125I labelled lectins. Thromb Res. 1979;16(5-6):825–831. doi: 10.1016/0049-3848(79)90225-1. [DOI] [PubMed] [Google Scholar]
  28. Okita J. R., Pidard D., Newman P. J., Montgomery R. R., Kunicki T. J. On the association of glycoprotein Ib and actin-binding protein in human platelets. J Cell Biol. 1985 Jan;100(1):317–321. doi: 10.1083/jcb.100.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Painter R. G., Ginsberg M. Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton. J Cell Biol. 1982 Feb;92(2):565–573. doi: 10.1083/jcb.92.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Painter R. G., Prodouz K. N., Gaarde W. Isolation of a subpopulation of glycoprotein IIb-III from platelet membranes that is bound to membrane actin. J Cell Biol. 1985 Feb;100(2):652–657. doi: 10.1083/jcb.100.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Patscheke H., Metz J., Forssmann W. G., Wörner P., Brossmer R. Ultrastructural changes of lectin-stimulated platelets analyzed by thin sections and freeze-fracturing. J Ultrastruct Res. 1978 Dec;65(3):234–245. doi: 10.1016/s0022-5320(78)80061-6. [DOI] [PubMed] [Google Scholar]
  32. Phillips D. R., Jennings L. K., Edwards H. H. Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol. 1980 Jul;86(1):77–86. doi: 10.1083/jcb.86.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pho D. B., Vasseur C., Desbruyeres E., Olomucki A. Evidence for the presence of tropomyosin in the cytoskeletons of ADP- and thrombin-stimulated blood platelets. FEBS Lett. 1984 Jul 23;173(1):164–168. doi: 10.1016/0014-5793(84)81039-x. [DOI] [PubMed] [Google Scholar]
  34. Rybicki J. P., Venton D. L., Le Breton G. C. The thromboxane antagonist, 13-azaprostanoic acid, inhibits arachidonic acid-induced Ca2+ release from isolated platelet membrane vesicles. Biochim Biophys Acta. 1983 Mar 22;751(1):66–73. doi: 10.1016/0005-2760(83)90257-6. [DOI] [PubMed] [Google Scholar]
  35. Sano K., Takai Y., Yamanishi J., Nishizuka Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. Comparison of thrombin and collagen actions. J Biol Chem. 1983 Feb 10;258(3):2010–2013. [PubMed] [Google Scholar]
  36. Sheterline P., Hopkins C. R. Transmembrane linkage between surface glycoproteins and components of the cytoplasm in neutrophil leukocytes. J Cell Biol. 1981 Sep;90(3):743–754. doi: 10.1083/jcb.90.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simon M. F., Chap H., Douste-Blazy L. Activation of phospholipase C in thrombin-stimulated platelets does not depend on cytoplasmic free calcium concentration. FEBS Lett. 1984 May 7;170(1):43–48. doi: 10.1016/0014-5793(84)81365-4. [DOI] [PubMed] [Google Scholar]
  38. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  39. Tellam R., Frieden C. Cytochalasin D and platelet gelsolin accelerate actin polymer formation. A model for regulation of the extent of actin polymer formation in vivo. Biochemistry. 1982 Jun 22;21(13):3207–3214. doi: 10.1021/bi00256a027. [DOI] [PubMed] [Google Scholar]
  40. Toh B. H., Hard C. C. Actin co-caps with concanavalin A receptors. Nature. 1977 Oct 20;269(5630):695–697. doi: 10.1038/269695a0. [DOI] [PubMed] [Google Scholar]
  41. Tuszynski G. P., Kornecki E., Cierniewski C., Knight L. C., Koshy A., Srivastava S., Niewiarowski S., Walsh P. N. Association of fibrin with the platelet cytoskeleton. J Biol Chem. 1984 Apr 25;259(8):5247–5254. [PubMed] [Google Scholar]
  42. Wheeler M. E., Cox A. C., Carroll R. C. Retention of the glycoprotein IIb-IIIa complex in the isolated platelet cytoskeleton. Effects of separable assembly of platelet pseudopodal and contractile cytoskeletons. J Clin Invest. 1984 Sep;74(3):1080–1089. doi: 10.1172/JCI111475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu M. P., Stracher A. Platelet cytoskeleton--membrane interactions. Biochem Biophys Res Commun. 1985 Jan 16;126(1):566–570. doi: 10.1016/0006-291x(85)90643-6. [DOI] [PubMed] [Google Scholar]
  44. Zavoico G. B., Feinstein M. B. Cytoplasmic Ca2+ in platelets is controlled by cyclic AMP: antagonism between stimulators and inhibitors of adenylate cyclase. Biochem Biophys Res Commun. 1984 Apr 30;120(2):579–585. doi: 10.1016/0006-291x(84)91294-4. [DOI] [PubMed] [Google Scholar]
  45. Zhuang Q. Q., Rosenberg S., Lawrence J., Stracher A. Role of actin binding protein phosphorylation in platelet cytoskeleton assembly. Biochem Biophys Res Commun. 1984 Jan 30;118(2):508–513. doi: 10.1016/0006-291x(84)91332-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES