Abstract
An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baskin D. G., Erlandsen S. L., Parsons J. A. Influence of hydrogen peroxide or alcoholic sodium hydroxide on the immunocytochemical detection of growth hormone and prolactin after osmium fixation. J Histochem Cytochem. 1979 Sep;27(9):1290–1292. doi: 10.1177/27.9.383831. [DOI] [PubMed] [Google Scholar]
- Bendayan M. Double immunocytochemical labeling applying the protein A-gold technique. J Histochem Cytochem. 1982 Jan;30(1):81–85. doi: 10.1177/30.1.6172469. [DOI] [PubMed] [Google Scholar]
- Bendayan M., Roth J., Perrelet A., Orci L. Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem. 1980 Feb;28(2):149–160. doi: 10.1177/28.2.7354212. [DOI] [PubMed] [Google Scholar]
- Bendayan M. Ultrastructural localization of nuclei acids by the use of enzyme-gold complexes. J Histochem Cytochem. 1981 Apr;29(4):531–541. doi: 10.1177/29.4.6265546. [DOI] [PubMed] [Google Scholar]
- Bendayan M., Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem. 1983 Jan;31(1):101–109. doi: 10.1177/31.1.6187796. [DOI] [PubMed] [Google Scholar]
- Builder S. E., Beavo J. A., Krebs E. G. Stoichiometry of cAMP and 1,N6-etheno-cAMP binding to protein kinase. J Biol Chem. 1980 Mar 25;255(6):2350–2354. [PubMed] [Google Scholar]
- Byus C. V., Fletcher W. H. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics. J Cell Biol. 1982 Jun;93(3):727–734. doi: 10.1083/jcb.93.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clevenger C. V., Epstein A. L. Identification of a nuclear protein component of interchromatin granules using a monoclonal antibody and immunogold electron microscopy. Exp Cell Res. 1984 Mar;151(1):194–207. doi: 10.1016/0014-4827(84)90368-9. [DOI] [PubMed] [Google Scholar]
- Clevenger C. V., Epstein A. L. Use of immunogold electron microscopy and monoclonal antibodies in the identification of nuclear substructures. J Histochem Cytochem. 1984 Jul;32(7):757–765. doi: 10.1177/32.7.6376619. [DOI] [PubMed] [Google Scholar]
- Corbin J. D., Keely S. L., Park C. R. The distribution and dissociation of cyclic adenosine 3':5'-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem. 1975 Jan 10;250(1):218–225. [PubMed] [Google Scholar]
- Corbin J. D., Sugden P. H., West L., Flockhart D. A., Lincoln T. M., McCarthy D. Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Jun 10;253(11):3997–4003. [PubMed] [Google Scholar]
- Dills W. L., Goodwin C. D., Lincoln T. M., Beavo J. A., Bechtel P. J., Corbin J. D., Krebs E. G. Purification of cyclic nucleotide receptor proteins by cyclic nucleotide affinity chromatography. Adv Cyclic Nucleotide Res. 1979;10:199–217. [PubMed] [Google Scholar]
- Eppenberger U., Roos W., Fabbro D., Sury A., Weber J., Bechtel E., Huber P., Jungmann R. A. Ontogeny of the adenosine-3':5'-phosphate-dependent protein-kinase system during early uterine development. Inverse relationship with the estrogen receptors. Eur J Biochem. 1979 Jul;98(1):253–259. doi: 10.1111/j.1432-1033.1979.tb13183.x. [DOI] [PubMed] [Google Scholar]
- Erlandsen S. L., Parsons J. A., Rodning C. B. Technical parameters of immunostaining of osmicated tissue in epoxy sections. J Histochem Cytochem. 1979 Sep;27(9):1286–1289. doi: 10.1177/27.9.90080. [DOI] [PubMed] [Google Scholar]
- Faulk W. P., Taylor G. M. An immunocolloid method for the electron microscope. Immunochemistry. 1971 Nov;8(11):1081–1083. doi: 10.1016/0019-2791(71)90496-4. [DOI] [PubMed] [Google Scholar]
- Geuze H. J., Slot J. W., van der Ley P. A., Scheffer R. C. Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J Cell Biol. 1981 Jun;89(3):653–665. doi: 10.1083/jcb.89.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higashino H., Takeda M. Changes in adenosine 3',5'-monophosphate level and protein kinase activity by glucagon in rat liver nuclei. J Biochem. 1974 Jan;75(1):189–191. doi: 10.1093/oxfordjournals.jbchem.a130374. [DOI] [PubMed] [Google Scholar]
- Hunzicker-Dunn M., Jungmann R. A., Evely L., Hadawi G. L., Maizels E. T., West D. E. Modulation of soluble ovarian adenosine 3',5'-monophosphate-dependent protein kinase activity during prepubertal development of the rat. Endocrinology. 1984 Jul;115(1):302–311. doi: 10.1210/endo-115-1-302. [DOI] [PubMed] [Google Scholar]
- Johnson E. M. Cyclic AMP-dependent protein kinase and its nuclear substrate proteins. Adv Cyclic Nucleotide Res. 1977;8:267–309. [PubMed] [Google Scholar]
- Jungmann R. A., Kelley D. C., Miles M. F., Milkowski D. M. Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6,O2-dibutyryl cyclic amp increase the rate of transcription and change the stability of lactate dehydrogenase a subunit messenger RNA in rat C6 glioma cells. J Biol Chem. 1983 Apr 25;258(8):5312–5318. [PubMed] [Google Scholar]
- Jungmann R. A., Russell D. H. Cyclic AMP, cyclic AMP-dependent protein kinase, and the regulation of gene expression. Life Sci. 1977 Jun 1;20(11):1787–1797. doi: 10.1016/0024-3205(77)90213-2. [DOI] [PubMed] [Google Scholar]
- Kuettel M. R., Schwoch G., Jungmann R. A. Localization of cyclic AMP-dependent protein kinase subunits in rat hepatocyte nuclei by immunogold electron microscopy. Cell Biol Int Rep. 1984 Nov;8(11):949–957. doi: 10.1016/0309-1651(84)90193-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laks M. S., Harrison J. J., Schwoch G., Jungmann R. A. Modulation of nuclear protein kinase activity and phosphorylation of histone H1 subspecies during the prereplicative phase of rat liver regeneration. J Biol Chem. 1981 Aug 25;256(16):8775–8785. [PubMed] [Google Scholar]
- Lamers W. H., Hanson R. W., Meisner H. M. cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase in rat liver nuclei. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5137–5141. doi: 10.1073/pnas.79.17.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledinko N., Chan I. J. Increase in type I cyclic adenosine 3':5'-monophosphate-dependent protein kinase activity and specific accumulation of type I regulatory subunits in adenovirus type 12-transformed cells. Cancer Res. 1984 Jun;44(6):2622–2627. [PubMed] [Google Scholar]
- Lee P. C., Radloff D., Schweppe J. S., Jungmann R. A. Testicular protein kinases. Characterization of multiple forms and ontogeny. J Biol Chem. 1976 Feb 25;251(4):914–921. [PubMed] [Google Scholar]
- Mace M. L., Jr, Van N. T., Conn P. M. Electron microscopic localization of DNA-dependent RNA polymerase binding sites on DNA using enzyme immobilized on colloidal gold. Cell Biol Int Rep. 1977 Nov;1(6):527–533. doi: 10.1016/0309-1651(77)90090-x. [DOI] [PubMed] [Google Scholar]
- Malkinson A. M., Butley M. S. Alterations in cyclic adenosine 3':5'-monophosphate-dependent protein kinases during normal and neoplastic lung development. Cancer Res. 1981 Apr;41(4):1334–1344. [PubMed] [Google Scholar]
- Maurer R. A. Transcriptional regulation of the prolactin gene by ergocryptine and cyclic AMP. Nature. 1981 Nov 5;294(5836):94–97. doi: 10.1038/294094a0. [DOI] [PubMed] [Google Scholar]
- Miles M. F., Hung P., Jungmann R. A. Cyclic AMP regulation of lactate dehydrogenase. Quantitation of lactate dehydrogenase M-subunit messenger RNA in isoproterenol-and N6,O2'-dibutyryl cyclic AMP-stimulated rat C6 glioma cells by hybridization analysis using a cloned cDNA probe. J Biol Chem. 1981 Dec 10;256(23):12545–12552. [PubMed] [Google Scholar]
- Murdoch G. H., Franco R., Evans R. M., Rosenfeld M. G. Polypeptide hormone regulation of gene expression. Thyrotropin-releasing hormone rapidly stimulates both transcription of the prolactin gene and the phosphorylation of a specific nuclear protein. J Biol Chem. 1983 Dec 25;258(24):15329–15335. [PubMed] [Google Scholar]
- Palmer W. K., Castagna M., Walsh D. A. Nuclear protein kinase activity in glucagon-stimulated perfused rat livers. Biochem J. 1974 Nov;143(2):469–471. doi: 10.1042/bj1430469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards J. S., Sehgal N., Tash J. S. Changes in content and cAMP-dependent phosphorylation of specific proteins in granulosa cells of preantral and preovulatory ovarian follicles and in corpora lutea. J Biol Chem. 1983 Apr 25;258(8):5227–5232. [PubMed] [Google Scholar]
- Roth J., Bendayan M., Orci L. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem. 1978 Dec;26(12):1074–1081. doi: 10.1177/26.12.366014. [DOI] [PubMed] [Google Scholar]
- Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
- Schwoch G., Hamann A. Determination and comparative analysis of the catalytic subunit of adenosine 3',5'-cyclic phosphate-dependent protein kinase by an enzyme-linked immunosorbent assay. Biochem J. 1982 Oct 15;208(1):109–117. doi: 10.1042/bj2080109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwoch G., Hamann A., Hilz H. Antiserum against the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase. Reactivity towards various protein kinases. Biochem J. 1980 Oct 15;192(1):223–230. doi: 10.1042/bj1920223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squinto S. P., Kelley-Geraghty D. C., Kuettel M. R., Jungmann R. A. Ultrastructural localization of cAMP-dependent protein kinase subunits in regenerating rat hepatocytes using immunogold electron microscopy. J Cyclic Nucleotide Protein Phosphor Res. 1985;10(1):65–73. [PubMed] [Google Scholar]
- Steiner A. L., Koide Y., Earp H. S., Bechtel P. J., Beavo J. A. Compartmentalization of cyclic nucleotides and cyclic AMP-dependent protein kinases in rat liver: immunocytochemical demonstration. Adv Cyclic Nucleotide Res. 1978;9:691–705. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Sande J., Huang H. L., Steiner A., Dumont J. E. Immunocytochemical localization of protein kinases and calmodulin in dog thyroid cells. Cell Biol Int Rep. 1983 Dec;7(12):981–988. doi: 10.1016/0309-1651(83)90002-4. [DOI] [PubMed] [Google Scholar]
- Warchol J. B., Brelińska R., Herbert D. C. Analysis of colloidal gold methods for labelling proteins. Histochemistry. 1982;76(4):567–575. doi: 10.1007/BF00489911. [DOI] [PubMed] [Google Scholar]