Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Sep 1;101(3):887–890. doi: 10.1083/jcb.101.3.887

Detection of surface-bound ligands by freeze-fracture autoradiography

PMCID: PMC2113717  PMID: 2411739

Abstract

This article describes a new freeze-fracture autoradiographic technique for the detection of radioactive ligands associated with the surface of cells in monolayer or suspension culture. Since freeze-fracture replicas are produced in the conventional way, all membrane features normally seen in freeze-fracture are retained, and autoradiographic grains produced by the labeled ligands are seen superimposed on unaltered exoplasmic membrane fracture faces. To assess the feasibility and resolution of this technique, we compared the surface distribution of alpha 2-macroglobulin and cholera toxin, labeled either with 125I or with colloidal gold, on 3T3-L1 fibroblasts. Both by autoradiography and cytochemical gold labeling, alpha 2-macroglobulin was associated specifically with coated pits, whereas cholera toxin was preferentially found over smaller, apparently non-coated membrane invaginations. Together with data on the surface localization of 125I-transferrin on HL-60 myelomonocytic cells, these results demonstrate the application of this technique for the accurate determination of ligand distribution over large areas of plasma membrane. The simplicity and reproducibility of the method should now allow freeze-fracture autoradiography to become a standard technique for investigating the distribution of both endogenous and exogenous cell surface-associated molecules, as well as the redistribution of such molecules under different experimental conditions.

Full Text

The Full Text of this article is available as a PDF (595.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carpentier J. L., Gorden P., Amherdt M., Van Obberghen E., Kahn C. R., Orci L. 125I-insulin binding to cultured human lymphocytes. Initial localization and fate of hormone determined by quantitative electron microscopic autoradiography. J Clin Invest. 1978 Apr;61(4):1057–1070. doi: 10.1172/JCI109005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickson R. B., Willingham M. C., Pastan I. alpha 2-macroglobulin adsorbed to colloidal gold: a new probe in the study of receptor-mediated endocytosis. J Cell Biol. 1981 Apr;89(1):29–34. doi: 10.1083/jcb.89.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisher K. A., Branton D. Freeze-fracture autoradiography: feasibility. J Cell Biol. 1976 Aug;70(2 Pt 1):453–458. doi: 10.1083/jcb.70.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher K. A. Monolayer freeze-fracture autoradiography: quantitative analysis of the transmembrane distribution of radioiodinated concanavalin A. J Cell Biol. 1982 Apr;93(1):155–163. doi: 10.1083/jcb.93.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fisher K. A. Spectroscopic assays for measuring quantities of erythrocyte membrane "halves". J Cell Biol. 1982 Jan;92(1):44–52. doi: 10.1083/jcb.92.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iacopetta B. J., Morgan E. H. The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J Biol Chem. 1983 Aug 10;258(15):9108–9115. [PubMed] [Google Scholar]
  9. Kan F. W., Kopriwa B. M., Leblond C. P. An improved method for freeze-fracture radioautography of tissues and cells, as applied to duodenal epithelium and thymic lymphocytes. J Histochem Cytochem. 1984 Jan;32(1):17–29. doi: 10.1177/32.1.6690598. [DOI] [PubMed] [Google Scholar]
  10. Montesano R., Roth J., Robert A., Orci L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature. 1982 Apr 15;296(5858):651–653. doi: 10.1038/296651a0. [DOI] [PubMed] [Google Scholar]
  11. Mosher D. F., Saksela O., Vaheri A. Synthesis and secretion of alpha-2-macroglobulin by cultured adherent lung cells. Comparison with cell strains derived from other tissues. J Clin Invest. 1977 Nov;60(5):1036–1045. doi: 10.1172/JCI108854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nermut M. V., Williams L. D. Freeze-fracture autoradiography of the red blood cell plasma membrane. J Microsc. 1980 Apr;118(4):453–461. doi: 10.1111/j.1365-2818.1980.tb00295.x. [DOI] [PubMed] [Google Scholar]
  13. Pauli B., Weinstein R. S., Soble L. W., Alroy J. Freeze-fracture of monolayer cultures. J Cell Biol. 1977 Mar;72(3):763–769. doi: 10.1083/jcb.72.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pinto da Silva P., Kan F. W. Label-fracture: a method for high resolution labeling of cell surfaces. J Cell Biol. 1984 Sep;99(3):1156–1161. doi: 10.1083/jcb.99.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rix E., Schiller A., Taugner R. Freeze-fracture-autoradiography. Histochemistry. 1976;50(2):91–101. doi: 10.1007/BF00495820. [DOI] [PubMed] [Google Scholar]
  16. Schiller A., Taugner R., Rix E. Freeze-fracture autoradiography. Progress towards a routine technique. J Histochem Cytochem. 1979 Nov;27(11):1514–1515. doi: 10.1177/27.11.512334. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES