Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Sep 1;101(3):725–734. doi: 10.1083/jcb.101.3.725

Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface

PMCID: PMC2113724  PMID: 3928633

Abstract

The intracellular transport of two closely related membrane glycoproteins was studied in the murine B cell lymphoma line, AKTB-1b. Using pulse-chase radiolabeling, the kinetics of appearance of the class I histocompatibility antigens, H-2Kk and H-2Dk, at the cell surface were compared and found to be remarkably different. Newly synthesized H-2Kk is transported rapidly such that all radiolabeled molecules reach the surface within 1 h. In contrast, the H-2Dk antigen is transported slowly with a half-time of 4-5 h. The rates of surface appearance for the two antigens closely resemble the rates at which their Asn-linked oligosaccharides mature from endoglucosaminidase H (endo H)-sensitive to endo H-resistant forms, a process that occurs in the Golgi apparatus. This suggests that the rate-limiting step in the transport of H-2Dk to the cell surface occurs before the formation of endo H-resistant oligosaccharides in the Golgi apparatus. Subcellular fractionation experiments confirmed this conclusion by identifying the endoplasmic reticulum (ER) as the site where the H-2Dk antigen accumulates. The retention of this glycoprotein in the ER does not appear to be due to a lack of solubility or an inability of the H-2Dk heavy chain to associate with beta 2-microglobulin. Our data is inconsistent with a passive membrane flow mechanism for the intracellular transport of membrane glycoproteins. Rather, it suggests that one or more receptors localized to the ER membrane may mediate the selective transport of membrane glycoproteins out of the ER to the Golgi apparatus. The fact that H-2Kk and H-2Dk are highly homologous (greater than or equal to 80%) indicates that this process can be strongly influenced by limited alterations in protein structure.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen S. B., Coligan J. E., Freed J. H. Isolation and biochemical characterization of the H-2Kk and H-2Dk antigens from the RDM-4 lymphoma. Mol Immunol. 1984 Jun;21(6):449–459. doi: 10.1016/0161-5890(84)90060-9. [DOI] [PubMed] [Google Scholar]
  2. Doherty P. C., Zinkernagel R. M. H-2 compatibility is required for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. J Exp Med. 1975 Feb 1;141(2):502–507. doi: 10.1084/jem.141.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunphy W. G., Brands R., Rothman J. E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell. 1985 Feb;40(2):463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
  4. Dunphy W. G., Rothman J. E. Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J Cell Biol. 1983 Jul;97(1):270–275. doi: 10.1083/jcb.97.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fitting T., Kabat D. Evidence for a glycoprotein "signal" involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J Biol Chem. 1982 Dec 10;257(23):14011–14017. [PubMed] [Google Scholar]
  6. Godelaine D., Spiro M. J., Spiro R. G. Processing of the carbohydrate units of thyroglobulin. J Biol Chem. 1981 Oct 10;256(19):10161–10168. [PubMed] [Google Scholar]
  7. Goldberg D. E., Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J Biol Chem. 1983 Mar 10;258(5):3159–3165. [PubMed] [Google Scholar]
  8. Grinna L. S., Robbins P. W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J Biol Chem. 1979 Sep 25;254(18):8814–8818. [PubMed] [Google Scholar]
  9. Hercz A., Harpaz N. Characterization of the oligosaccharides of liver Z variant alpha 1-antitrypsin. Can J Biochem. 1980 Aug;58(8):644–648. doi: 10.1139/o80-089. [DOI] [PubMed] [Google Scholar]
  10. Hickman S., Theodorakis J. L., Greco J. M., Brown P. H. Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi alpha 1,2-mannosidase activity. J Cell Biol. 1984 Feb;98(2):407–416. doi: 10.1083/jcb.98.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  12. Kaplan G., Plutner H., Mellman I., Unkeless J. C. Studies on externally disposed plasma membrane proteins. Trinitrobenzene sulfonic acid derivatization and immune precipitation. Exp Cell Res. 1981 May;133(1):103–114. doi: 10.1016/0014-4827(81)90361-x. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Le A. V., Doyle D. Differential regulation of mouse H-2 alloantigens. Biochemistry. 1982 Nov 9;21(23):5730–5738. doi: 10.1021/bi00266a001. [DOI] [PubMed] [Google Scholar]
  15. Lillehoj E. P., Coligan J. E. Amino acid sequence analysis of the H-2Kk alloantigen: complete sequence of residues 1-98 and partial sequence from 99 to 263. Mol Immunol. 1984 Mar;21(3):185–190. doi: 10.1016/0161-5890(84)90072-5. [DOI] [PubMed] [Google Scholar]
  16. Lodish H. F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J Cell Biol. 1984 May;98(5):1720–1729. doi: 10.1083/jcb.98.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lodish H. F., Kong N., Snider M., Strous G. J. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983 Jul 7;304(5921):80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
  18. Nathenson S. G., Uehara H., Ewenstein B. M., Kindt T. J., Coligan J. E. Primary structural: analysis of the transplantation antigens of the murine H-2 major histocompatibility complex. Annu Rev Biochem. 1981;50:1025–1052. doi: 10.1146/annurev.bi.50.070181.005113. [DOI] [PubMed] [Google Scholar]
  19. Olden K., Parent J. B., White S. L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta. 1982 May 12;650(4):209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
  20. Ozato K., Mayer N., Sachs D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol. 1980 Feb;124(2):533–540. [PubMed] [Google Scholar]
  21. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  22. Quinn P., Griffiths G., Warren G. Dissection of the Golgi complex. II. Density separation of specific Golgi functions in virally infected cells treated with monensin. J Cell Biol. 1983 Mar;96(3):851–856. doi: 10.1083/jcb.96.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rose J. K., Bergmann J. E. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Cell. 1983 Sep;34(2):513–524. doi: 10.1016/0092-8674(83)90384-7. [DOI] [PubMed] [Google Scholar]
  24. Roth J., Berger E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982 Apr;93(1):223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rothman J. E. The golgi apparatus: two organelles in tandem. Science. 1981 Sep 11;213(4513):1212–1219. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
  26. Sabatini D. D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol. 1982 Jan;92(1):1–22. doi: 10.1083/jcb.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sidman C. Differing requirements for glycosylation in the secretion of related glycoproteins is determined neither by the producing cell nor by the relative number of oligosaccharide units. J Biol Chem. 1981 Sep 25;256(18):9374–9376. [PubMed] [Google Scholar]
  28. Swiedler S. J., Freed J. H., Tarentino A. L., Plummer T. H., Jr, Hart G. W. Oligosaccharide microheterogeneity of the murine major histocompatibility antigens. Reproducible site-specific patterns of sialylation and branching in asparagine-linked oligosaccharides. J Biol Chem. 1985 Apr 10;260(7):4046–4054. [PubMed] [Google Scholar]
  29. Swiedler S. J., Hart G. W., Tarentino A. L., Plummer T. H., Jr, Freed J. H. Stable oligosaccharide microheterogeneity at individual glycosylation sites of a murine major histocompatibility antigen derived from a B-cell lymphoma. J Biol Chem. 1983 Oct 10;258(19):11515–11523. [PubMed] [Google Scholar]
  30. Walter P., Gilmore R., Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984 Aug;38(1):5–8. doi: 10.1016/0092-8674(84)90520-8. [DOI] [PubMed] [Google Scholar]
  31. Wu G. E., Hozumi N., Murialdo H. Secretion of a lambda 2 immunoglobulin chain is prevented by a single amino acid substitution in its variable region. Cell. 1983 May;33(1):77–83. doi: 10.1016/0092-8674(83)90336-7. [DOI] [PubMed] [Google Scholar]
  32. Zatz M. M., Mathieson B. J., Kanellopoulos-Langevin C., Sharrow S. O. Separation and characterization of two component tumor lines within the AKR lymphoma, AKTB-1, by fluorescence-activated cell sorting and flow microfluorometry analysis. I. the coexistence of sIg+ and sIg- sublines. J Immunol. 1981 Feb;126(2):608–613. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES