Abstract
In skeletal muscles that have been damaged in ways which spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fibers are characterized by junctional folds and accumulations of acetylcholine receptors and acetylcholinesterase (AChE). The formation of junctional folds and the accumulation of acetylcholine receptors is known to be directed by components of the synaptic portion of the myofiber basal lamina. The aim of this study was to determine whether or not the synaptic basal lamina contains molecules that direct the accumulation of AChE. We crushed frog muscles in a way that caused disintegration and phagocytosis of all cells at the neuromuscular junction, and at the same time, we irreversibly blocked AChE activity. New muscle fibers were allowed to regenerate within the basal lamina sheaths of the original muscle fibers but reinnervation of the muscles was deliberately prevented. We then stained for AChE activity and searched the surface of the new muscle fibers for deposits of enzyme they had produced. Despite the absence of innervation, AChE preferentially accumulated at points where the plasma membrane of the new muscle fibers was apposed to the regions of the basal lamina that had occupied the synaptic cleft at the neuromuscular junctions. We therefore conclude that molecules stably attached to the synaptic portion of myofiber basal lamina direct the accumulation of AChE at the original synaptic sites in regenerating muscle. Additional studies revealed that the AChE was solubilized by collagenase and that it remained adherent to basal lamina sheaths after degeneration of the new myofibers, indicating that it had become incorporated into the basal lamina, as at normal neuromuscular junctions.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. J., Fambrough D. M. Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J Cell Biol. 1983 Nov;97(5 Pt 1):1396–1411. doi: 10.1083/jcb.97.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anglister L., McMahan U. J. Extracellular matrix components involved in neuromuscular transmission and regeneration. Ciba Found Symp. 1984;108:163–178. doi: 10.1002/9780470720899.ch11. [DOI] [PubMed] [Google Scholar]
- BIRKS R., HUXLEY H. E., KATZ B. The fine structure of the neuromuscular junction of the frog. J Physiol. 1960 Jan;150:134–144. doi: 10.1113/jphysiol.1960.sp006378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bader D. Density and distribution of alpha-bungarotoxin-binding sites in postsynaptic structures of regenerated rat skeletal muscle. J Cell Biol. 1981 Feb;88(2):338–345. doi: 10.1083/jcb.88.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernfield M., Banerjee S. D. The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis. Dev Biol. 1982 Apr;90(2):291–305. doi: 10.1016/0012-1606(82)90378-5. [DOI] [PubMed] [Google Scholar]
- Betz W., Sakmann B. Effects of proteolytic enzymes on function and structure of frog neuromuscular junctions. J Physiol. 1973 May;230(3):673–688. doi: 10.1113/jphysiol.1973.sp010211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandan E., Inestrosa N. C. Binding of the asymmetric forms of acetylcholinesterase to heparin. Biochem J. 1984 Jul 15;221(2):415–422. doi: 10.1042/bj2210415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burden S. J., Sargent P. B., McMahan U. J. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979 Aug;82(2):412–425. doi: 10.1083/jcb.82.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burrage T. G., Lentz T. L. Ultrastructural characterization of surface specializations containing high-density acetylcholine receptors on embryonic chick myotubes in vivo and in vitro. Dev Biol. 1981 Jul 30;85(2):267–286. doi: 10.1016/0012-1606(81)90259-1. [DOI] [PubMed] [Google Scholar]
- Cangiano A., Lømo T., Lutzemberger L., Sveen O. Effects of chronic nerve conduction block on formation of neuromuscular junctions and junctional AChE in the rat. Acta Physiol Scand. 1980 Jul;109(3):283–296. doi: 10.1111/j.1748-1716.1980.tb06599.x. [DOI] [PubMed] [Google Scholar]
- Carlson B. M. The regeneration of skeletal muscle. A review. Am J Anat. 1973 Jun;137(2):119–149. doi: 10.1002/aja.1001370202. [DOI] [PubMed] [Google Scholar]
- Courtoy P. J., Timpl R., Farquhar M. G. Comparative distribution of laminin, type IV collagen, and fibronectin in the rat glomerulus. J Histochem Cytochem. 1982 Sep;30(9):874–886. doi: 10.1177/30.9.7130672. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Inestrosa N. C., Stiles J. R. Subcellular localization of acetylcholinesterase molecular forms in endplate regions of adult mammalian skeletal muscle. Neurochem Res. 1984 Sep;9(9):1211–1230. doi: 10.1007/BF00973035. [DOI] [PubMed] [Google Scholar]
- GUTH L., ZALEWSKI A. A. Disposition of cholinesterase following implantation of nerve into innervated and denervated muscle. Exp Neurol. 1963 Apr;7:316–326. doi: 10.1016/0014-4886(63)90078-5. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Greenburg G., Birdwell C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 1978 Nov;38(11 Pt 2):4155–4171. [PubMed] [Google Scholar]
- Gulati A. K., Reddi A. H., Zalewski A. A. Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J Cell Biol. 1983 Oct;97(4):957–962. doi: 10.1083/jcb.97.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall Z. W., Kelly R. B. Enzymatic detachment of endplate acetylcholinesterase from muscle. Nat New Biol. 1971 Jul 14;232(28):62–63. doi: 10.1038/newbio232062a0. [DOI] [PubMed] [Google Scholar]
- Inestrosa N. C., Ramírez B. U., Fernández H. L. Effects of denervation and of axoplasmic transport blockage on the in vitro release of muscle endplate acetylcholinesterase. J Neurochem. 1977 May;28(5):941–945. doi: 10.1111/j.1471-4159.1977.tb10654.x. [DOI] [PubMed] [Google Scholar]
- Inestrosa N. C., Silberstein L., Hall Z. W. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell. 1982 May;29(1):71–79. doi: 10.1016/0092-8674(82)90091-5. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY. J Cell Biol. 1964 Nov;23:217–232. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurie G. W., Leblond C. P., Martin G. R. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1982 Oct;95(1):340–344. doi: 10.1083/jcb.95.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Letinsky M. S., Fischbeck K. H., McMahan U. J. Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol. 1976 Dec;5(6):691–718. doi: 10.1007/BF01181582. [DOI] [PubMed] [Google Scholar]
- Lømo T., Slater C. R. Control of junctional acetylcholinesterase by neural and muscular influences in the rat. J Physiol. 1980 Jun;303:191–202. doi: 10.1113/jphysiol.1980.sp013280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall L. M., Sanes J. R., McMahan U. J. Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3073–3077. doi: 10.1073/pnas.74.7.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massoulié J., Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci. 1982;5:57–106. doi: 10.1146/annurev.ne.05.030182.000421. [DOI] [PubMed] [Google Scholar]
- McMahan U. J., Edgington D. R., Kuffler D. P. Factors that influence regeneration of the neuromuscular junction. J Exp Biol. 1980 Dec;89:31–42. doi: 10.1242/jeb.89.1.31. [DOI] [PubMed] [Google Scholar]
- McMahan U. J., Sanes J. R., Marshall L. M. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature. 1978 Jan 12;271(5641):172–174. doi: 10.1038/271172a0. [DOI] [PubMed] [Google Scholar]
- McMahan U. J., Slater C. R. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J Cell Biol. 1984 Apr;98(4):1453–1473. doi: 10.1083/jcb.98.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miledi R., Molenaar P. C., Polak R. L. Acetylcholinesterase activity in intact and homogenized skeletal muscle of the frog. J Physiol. 1984 Apr;349:663–686. doi: 10.1113/jphysiol.1984.sp015180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody-Corbett F., Cohen M. W. Localization of cholinesterase at sites of high acetylcholine receptor density on embryonic amphibian muscle cells cultured without nerve. J Neurosci. 1981 Jun;1(6):596–605. doi: 10.1523/JNEUROSCI.01-06-00596.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitkin R. M., Wallace B. G., Spira M. E., Godfrey E. W., McMahan U. J. Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):653–665. doi: 10.1101/sqb.1983.048.01.069. [DOI] [PubMed] [Google Scholar]
- Peng H. B., Cheng P. C. Formation of postsynaptic specializations induced by latex beads in cultured muscle cells. J Neurosci. 1982 Dec;2(12):1760–1774. doi: 10.1523/JNEUROSCI.02-12-01760.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pécot-Dechavassine M. Evolution de l'activité des cholinestérases et de leur capacité fonctionnelle au niveau des jonctions neuromusculaires et musculotendineuses de la grenoluille après section du nerf moteur. Arch Int Pharmacodyn Ther. 1968 Nov;176(1):118–133. [PubMed] [Google Scholar]
- Rieger F., Koenig J., Vigny M. Spontaneous contractile activity and the presence of the 16 S form of acetylcholinesterase in rat muscle cells in culture: reversible suppressive action of tetrodotoxin. Dev Biol. 1980 May;76(2):358–365. doi: 10.1016/0012-1606(80)90385-1. [DOI] [PubMed] [Google Scholar]
- Rubin L. L., Schuetze S. M., Weill C. L., Fischbach G. D. Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro. Nature. 1980 Jan 17;283(5744):264–267. doi: 10.1038/283264a0. [DOI] [PubMed] [Google Scholar]
- Sanes J. R., Feldman D. H., Cheney J. M., Lawrence J. C., Jr Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes. J Neurosci. 1984 Feb;4(2):464–473. doi: 10.1523/JNEUROSCI.04-02-00464.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanes J. R., Hall Z. W. Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. J Cell Biol. 1979 Nov;83(2 Pt 1):357–370. doi: 10.1083/jcb.83.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanes J. R. Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol. 1982 May;93(2):442–451. doi: 10.1083/jcb.93.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberstein L., Inestrosa N. C., Hall Z. W. Aneural muscle cell cultures make synaptic basal lamina components. Nature. 1982 Jan 14;295(5845):143–145. doi: 10.1038/295143a0. [DOI] [PubMed] [Google Scholar]
- Sketelj J., Brzin M. Attachment of acetylcholinesterase to structures of the motor endplate. Histochemistry. 1979 Jul 11;61(3):239–248. doi: 10.1007/BF00508444. [DOI] [PubMed] [Google Scholar]
- Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terranova V. P., Rao C. N., Kalebic T., Margulies I. M., Liotta L. A. Laminin receptor on human breast carcinoma cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):444–448. doi: 10.1073/pnas.80.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vigny M., Martin G. R., Grotendorst G. R. Interactions of asymmetric forms of acetylcholinesterase with basement membrane components. J Biol Chem. 1983 Jul 25;258(14):8794–8798. [PubMed] [Google Scholar]
- Weinberg C. B., Hall Z. W. Junctional form of acetylcholinesterase restored at nerve-free endplates. Dev Biol. 1979 Feb;68(2):631–635. doi: 10.1016/0012-1606(79)90233-1. [DOI] [PubMed] [Google Scholar]
- Younkin S. G., Rosenstein C., Collins P. L., Rosenberry T. L. Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem. 1982 Nov 25;257(22):13630–13637. [PubMed] [Google Scholar]