Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Sep 1;101(3):871–879. doi: 10.1083/jcb.101.3.871

Metabolic cooperation between vascular endothelial cells and smooth muscle cells in co-culture: changes in low density lipoprotein metabolism

PMCID: PMC2113736  PMID: 4030896

Abstract

A microcarrier co-culture system for aortic endothelial cells and smooth muscle cells (SMCs) was developed as a model for metabolic interactions between cells of the vessel wall. Low density lipoprotein (LDL) metabolism in SMCs was significantly influenced by co-culture with endothelium. The numbers of high affinity receptors for LDL was increased more than twofold (range, 2.1-5.6), with concomitant increases in LDL receptor-mediated endocytosis and degradation. These effects reached a plateau at an endothelial cell/SMC ratio of 1. Kinetic analysis of the endocytic pathway for LDL in SMCs indicated that, in co-culture with endothelium, there was no alteration in the binding affinity of LDL to its receptors but that the internalization rate constant declined and the rate constant for degradation increased. This analysis suggested that the formation and migration of endocytic vesicles was the rate-limiting step of enhanced LDL metabolism under co- culture conditions. Two mechanisms by which endothelial cells influenced smooth muscle LDL metabolism were identified. First, mitogen(s) derived from endothelial cells stimulated entry of SMCs into the growth cycle, and the changes in LDL metabolism occurred as a consequence of G1-S transition. Second, SMC lipoprotein metabolism was stimulated in the absence of mitogens by a low molecular weight (less than 3,500) factor or factors. Co-culture was a required condition for the latter effect, suggesting that the mediator(s) may be unstable or that cell-cell communication was necessary for expression. These results (a) demonstrate that vascular cell interactions can modify LDL metabolism in SMCs, (b) provide some insights into the mechanisms responsible, and (c) identify co-culture as an experimental approach appropriate to certain aspects of vascular cell biology.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bierman E. L., Stein O., Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res. 1974 Jul;35(1):136–150. doi: 10.1161/01.res.35.1.136. [DOI] [PubMed] [Google Scholar]
  2. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  3. Burstein M., Scholnick H. R., Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 1970 Nov;11(6):583–595. [PubMed] [Google Scholar]
  4. Castellot J. J., Jr, Addonizio M. L., Rosenberg R., Karnovsky M. J. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J Cell Biol. 1981 Aug;90(2):372–379. doi: 10.1083/jcb.90.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castellot J. J., Jr, Favreau L. V., Karnovsky M. J., Rosenberg R. D. Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J Biol Chem. 1982 Oct 10;257(19):11256–11260. [PubMed] [Google Scholar]
  6. Chait A., Ross R., Albers J. J., Bierman E. L. Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4084–4088. doi: 10.1073/pnas.77.7.4084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cornicelli J. A., Witte L. D., Goodman D. S. Inhibition of LDL degradation in cultured human fibroblasts induced by endothelial cell-conditioned medium. Arteriosclerosis. 1983 Nov-Dec;3(6):560–567. doi: 10.1161/01.atv.3.6.560. [DOI] [PubMed] [Google Scholar]
  8. Davies P. F., Kerr C. Co-cultivation of vascular endothelial and smooth muscle cells using microcarrier techniques. Exp Cell Res. 1982 Oct;141(2):455–459. doi: 10.1016/0014-4827(82)90234-8. [DOI] [PubMed] [Google Scholar]
  9. Davies P. F., Kerr C. Modification of low density lipoprotein metabolism by growth factors in cultured vascular cells and human skin fibroblasts. Dependence upon duration of exposure. Biochim Biophys Acta. 1982 Jul 20;712(1):26–32. doi: 10.1016/0005-2760(82)90080-7. [DOI] [PubMed] [Google Scholar]
  10. Davies P. F., Ross R. Mediation of pinocytosis in cultured arterial smooth muscle and endothelial cells by platelet-derived growth factor. J Cell Biol. 1978 Dec;79(3):663–671. doi: 10.1083/jcb.79.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DiCorleto P. E., Bowen-Pope D. F. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1919–1923. doi: 10.1073/pnas.80.7.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DiCorleto P. E., Gajdusek C. M., Schwartz S. M., Ross R. Biochemical properties of the endothelium-derived growth factor: comparison to other growth factors. J Cell Physiol. 1983 Mar;114(3):339–345. doi: 10.1002/jcp.1041140313. [DOI] [PubMed] [Google Scholar]
  13. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  14. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  15. Gajdusek C., DiCorleto P., Ross R., Schwartz S. M. An endothelial cell-derived growth factor. J Cell Biol. 1980 May;85(2):467–472. doi: 10.1083/jcb.85.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gimbrone M. A., Jr Culture of vascular endothelium. Prog Hemost Thromb. 1976;3:1–28. [PubMed] [Google Scholar]
  17. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  18. Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
  19. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  20. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. MacIntyre D. E., Pearson J. D., Gordon J. L. Localisation and stimulation of prostacyclin production in vascular cells. Nature. 1978 Feb 9;271(5645):549–551. doi: 10.1038/271549a0. [DOI] [PubMed] [Google Scholar]
  24. Miller N. E. Plasma lipoproteins, lipid transport, and atherosclerosis: recent developments. J Clin Pathol. 1979 Jul;32(7):639–650. doi: 10.1136/jcp.32.7.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quesney-Huneeus V., Galick H. A., Siperstein M. D., Erickson S. K., Spencer T. A., Nelson J. A. The dual role of mevalonate in the cell cycle. J Biol Chem. 1983 Jan 10;258(1):378–385. [PubMed] [Google Scholar]
  26. Ross R. George Lyman Duff Memorial Lecture. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis. 1981 Sep-Oct;1(5):293–311. doi: 10.1161/01.atv.1.5.293. [DOI] [PubMed] [Google Scholar]
  27. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Truskey G. A., Davies P. F. Effects of ammonium ion derived from bovine endothelial cells upon low density lipoprotein degradation in cultured vascular smooth muscle cells. Cell Biol Int Rep. 1985 Apr;9(4):323–330. doi: 10.1016/0309-1651(85)90027-x. [DOI] [PubMed] [Google Scholar]
  29. Vogel A., Raines E., Kariya B., Rivest M. J., Ross R. Coordinate control of 3T3 cell proliferation by platelet-derived growth factor and plasma components. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2810–2814. doi: 10.1073/pnas.75.6.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weinstein D. B., Carew T. E., Steinberg D. Uptake and degradation of low density lipoprotein by swine arterial smoot muscle cells with inhibition of cholesterol biosynthesis. Biochim Biophys Acta. 1976 Mar 26;424(3):404–421. doi: 10.1016/0005-2760(76)90030-8. [DOI] [PubMed] [Google Scholar]
  31. Weksler B. B., Ley C. W., Jaffe E. A. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest. 1978 Nov;62(5):923–930. doi: 10.1172/JCI109220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Witte L. D., Cornicelli J. A., Miller R. W., Goodman D. S. Effect of platelet-derived and endothelial cell-derived growth factors on the low density lipoprotein receptor pathway in cultured human fibroblasts. J Biol Chem. 1982 May 25;257(10):5392–5401. [PubMed] [Google Scholar]
  33. Witte L. D., Cornicelli J. A. Platelet-derived growth factor stimulates low density lipoprotein receptor activity in cultured human fibroblasts. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5962–5966. doi: 10.1073/pnas.77.10.5962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Bono D., Green C. Interaction between vascular endothelial cells and vascular intimal spindle-shaped cells in vitro. J Cell Sci. 1983 Mar;60:89–102. doi: 10.1242/jcs.60.1.89. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES