Abstract
Heparan sulfate and heparin, two sulfated glycosaminoglycans (GAGs), extracted collagen-tailed acetylcholinesterase (AChE) from the extracellular matrix (ECM) of the electric organ of Discopyge tschudii. The effect of heparan sulfate and heparin was abolished by protamine; other GAGs could not extract the esterase. The solubilization of the asymmetric AChE apparently occurs through the formation of a soluble AChE-GAG complex of 30S. Heparitinase treatment but not chondroitinase ABC treatment of the ECM released asymmetric AChE forms. This provides direct evidence for the vivo interaction between asymmetric AChE and heparan sulfate residues of the ECM. Biochemical analysis of the electric organ ECM showed that sulfated GAGs bound to proteoglycans account for 5% of the total basal lamina. Approximately 20% of the total GAGs were susceptible to heparitinase or nitrous acid oxidation which degrades specifically heparan sulfates, and approximately 80% were susceptible to digestion with chondroitinase ABC, which degrades chondroitin-4 and -6 sulfates and dermatan sulfate. Our experiments provide evidence that asymmetric AChE and carbohydrate components of proteoglycans are associated in the ECM; they also indicate that a heparan sulfate proteoglycan is involved in the anchorage of the collagen-tailed AChE to the synaptic basal lamina.
Full Text
The Full Text of this article is available as a PDF (817.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- Bon S., Cartaud J., Massoulié J. The dependence of acetylcholinesterase aggregation at low ionic strength upon a polyanionic component. Eur J Biochem. 1978 Apr;85(1):1–14. doi: 10.1111/j.1432-1033.1978.tb12207.x. [DOI] [PubMed] [Google Scholar]
- Bon S., Vigny M., Massoulié J. Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2546–2550. doi: 10.1073/pnas.76.6.2546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandan E., Inestrosa N. C. Binding of the asymmetric forms of acetylcholinesterase to heparin. Biochem J. 1984 Jul 15;221(2):415–422. doi: 10.1042/bj2210415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAVEN G. R., STEERS E., Jr, ANFINSEN C. B. PURIFICATION, COMPOSITION, AND MOLECULAR WEIGHT OF THE BETA-GALACTOSIDASE OF ESCHERICHIA COLI K12. J Biol Chem. 1965 Jun;240:2468–2477. [PubMed] [Google Scholar]
- Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
- Cifonelli J. A., King J. The distribution of 2-acetamido-2-deoxy-D-glucose residues in mammalian heparins. Carbohydr Res. 1972 Feb;21(2):173–186. doi: 10.1016/s0008-6215(00)82144-8. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Ehrlich J., Stivala S. S. Chemistry and pharmacology of heparin. J Pharm Sci. 1973 Apr;62(4):517–544. doi: 10.1002/jps.2600620402. [DOI] [PubMed] [Google Scholar]
- Emmerling M. R., Johnson C. D., Mosher D. F., Lipton B. H., Lilien J. E. Cross-linking and binding of fibronectin with asymmetric acetylcholinesterase. Biochemistry. 1981 May 26;20(11):3242–3247. doi: 10.1021/bi00514a040. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Inestrosa N. C., Stiles J. R. Subcellular localization of acetylcholinesterase molecular forms in endplate regions of adult mammalian skeletal muscle. Neurochem Res. 1984 Sep;9(9):1211–1230. doi: 10.1007/BF00973035. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Stiles J. R. Intra- versus extracellular recovery of 16S acetylcholinesterase following organophosphate inactivation in the rat. Neurosci Lett. 1984 Aug 24;49(1-2):117–122. doi: 10.1016/0304-3940(84)90146-0. [DOI] [PubMed] [Google Scholar]
- Gordon J. R., Bernfield M. R. The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev Biol. 1980 Jan;74(1):118–135. doi: 10.1016/0012-1606(80)90056-1. [DOI] [PubMed] [Google Scholar]
- Grassi J., Massoulié J., Timpl R. Relationship of collagen-tailed acetylcholinesterase with basal lamina components. Absence of binding with laminin, fibronectin, and collagen types IV and V and lack of reactivity with different anti-collagen sera. Eur J Biochem. 1983 Jun 1;133(1):31–38. doi: 10.1111/j.1432-1033.1983.tb07426.x. [DOI] [PubMed] [Google Scholar]
- Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hay E. D. Extracellular matrix. J Cell Biol. 1981 Dec;91(3 Pt 2):205s–223s. doi: 10.1083/jcb.91.3.205s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hök M., Kjellén L., Johansson S. Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
- Inestrosa N. C. 16S acetylcholinesterase of the extracellular matrix is assembled within mouse muscle cells in culture. Biochem J. 1984 Jan 15;217(2):377–381. doi: 10.1042/bj2170377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inestrosa N. C., Méndez B. The A12 acetylcholinesterase and polypeptide composition of electric organ basal lamina of Electrophorus and some Torpedinae fishes. Cell Biochem Funct. 1983 Apr;1(1):41–48. doi: 10.1002/cbf.290010108. [DOI] [PubMed] [Google Scholar]
- Inestrosa N. C., Reiness C. G., Reichardt L. F., Hall Z. W. Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12 cells treated with nerve growth factor. J Neurosci. 1981 Nov;1(11):1260–1267. doi: 10.1523/JNEUROSCI.01-11-01260.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inestrosa N. C., Silberstein L., Hall Z. W. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell. 1982 May;29(1):71–79. doi: 10.1016/0092-8674(82)90091-5. [DOI] [PubMed] [Google Scholar]
- Jilek F., Hörmann H. Fibronectin (cold-insoluble globulin), VI. Influence of heparin and hyaluronic acid on the binding of native collagen. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):597–603. doi: 10.1515/bchm2.1979.360.1.597. [DOI] [PubMed] [Google Scholar]
- Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanwar Y. S., Hascall V. C., Farquhar M. G. Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane. J Cell Biol. 1981 Aug;90(2):527–532. doi: 10.1083/jcb.90.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinman H. K., McGarvey M. L., Hassell J. R., Martin G. R. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry. 1983 Oct 11;22(21):4969–4974. doi: 10.1021/bi00290a014. [DOI] [PubMed] [Google Scholar]
- Lwebuga-Mukasa J. S., Lappi S., Taylor P. Molecular forms of acetylcholinesterase from Torpedo californica: their relationship to synaptic membranes. Biochemistry. 1976 Apr 6;15(7):1425–1434. doi: 10.1021/bi00652a012. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci. 1982;5:57–106. doi: 10.1146/annurev.ne.05.030182.000421. [DOI] [PubMed] [Google Scholar]
- Mays C., Rosenberry T. L. Characterization of pepsin-resistant collagen-like tail subunit fragments of 18S and 14S acetylcholinesterase from Electrophorus electricus. Biochemistry. 1981 May 12;20(10):2810–2817. doi: 10.1021/bi00513a016. [DOI] [PubMed] [Google Scholar]
- Méndez B., Garrido J., Maldonado M., Jaksic F. M., Inestrosa N. C. The electric organ of Discopyge tschudii: its innervated face and the biology of acetylcholinesterase. Cell Mol Neurobiol. 1984 Jun;4(2):125–142. doi: 10.1007/BF00711000. [DOI] [PubMed] [Google Scholar]
- Perkins M. E., Ji T. H., Hynes R. O. Cross-linking of fibronectin to sulfated proteoglycans at the cell surface. Cell. 1979 Apr;16(4):941–952. doi: 10.1016/0092-8674(79)90109-0. [DOI] [PubMed] [Google Scholar]
- Rotundo R. L. Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):479–483. doi: 10.1073/pnas.81.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruoslahti E., Engvall E. Complexing of fibronectin glycosaminoglycans and collagen. Biochim Biophys Acta. 1980 Aug 13;631(2):350–358. doi: 10.1016/0304-4165(80)90308-6. [DOI] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Straus A. H., Nader H. B., Dietrich C. P. Absence of heparin or heparin-like compounds in mast-cell-free tissues and animals. Biochim Biophys Acta. 1982 Aug 27;717(3):478–485. doi: 10.1016/0304-4165(82)90291-4. [DOI] [PubMed] [Google Scholar]
- Timpl R., Dziadek M., Fujiwara S., Nowack H., Wick G. Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem. 1983 Dec 15;137(3):455–465. doi: 10.1111/j.1432-1033.1983.tb07849.x. [DOI] [PubMed] [Google Scholar]
- Torres J. C., Inestrosa N. C. Heparin solubilizes asymmetric acetylcholinesterase from rat neuromuscular junction. FEBS Lett. 1983 Apr 18;154(2):265–268. doi: 10.1016/0014-5793(83)80162-8. [DOI] [PubMed] [Google Scholar]
- Vigny M., Martin G. R., Grotendorst G. R. Interactions of asymmetric forms of acetylcholinesterase with basement membrane components. J Biol Chem. 1983 Jul 25;258(14):8794–8798. [PubMed] [Google Scholar]
- Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]
- Yanagishita M., Hascall V. C. Characterization of low buoyant density dermatan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture. J Biol Chem. 1983 Nov 10;258(21):12847–12856. [PubMed] [Google Scholar]
- Younkin S. G., Rosenstein C., Collins P. L., Rosenberry T. L. Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem. 1982 Nov 25;257(22):13630–13637. [PubMed] [Google Scholar]