Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1339–1342. doi: 10.1083/jcb.100.4.1339

Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes

PMCID: PMC2113749  PMID: 3156868

Abstract

We have examined acetylcholine (ACh)-elicited potentials or currents in current- or voltage-clamped cultured myotubes exposed to 12-O- tetradecanoyl-phorbol-13-acetate (TPA), a potent tumor promoter that activates protein kinase C. Although this agent had little action on either membrane resting potential or electrical resistance, a reversible decrease in ACh sensitivity was induced on 3-4-d-old chick myotubes. Depression of transmitter action by TPA was extended to 7-8-d mouse myotubes only when they were treated with phosphatidylserine. Glyceryl dioleate had effects on myotubes similar to those of TPA but with a reduced efficacy. We conclude that the activation of protein kinase C might be involved with the capacity of ACh receptors to respond to transmitter stimulation.

Full Text

The Full Text of this article is available as a PDF (465.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo S., Zani B., Siracusa G., Molinaro M. Expression of differentiative traits in the absence of cell fusion during myogenesis in culture. Cell Differ. 1976 Apr;5(1):53–67. doi: 10.1016/0045-6039(76)90015-4. [DOI] [PubMed] [Google Scholar]
  2. Albuquerque E. X., Rash J. E., Mayer R. F., Satterfield J. R. An electrophysiological and morphological study of the neuromuscular junction in patients with myasthenia gravis. Exp Neurol. 1976 Jun;51(3):536–563. doi: 10.1016/0014-4886(76)90179-5. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  5. Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
  6. Cossu G., Eusebi F., Molinaro M. Reduced acetylcholine sensitivity in dystrophic mouse myotubes in vitro. Muscle Nerve. 1984 Jan;7(1):73–76. doi: 10.1002/mus.880070112. [DOI] [PubMed] [Google Scholar]
  7. Cossu G., Molinaro M., Pacifici M. Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev Biol. 1983 Aug;98(2):520–524. doi: 10.1016/0012-1606(83)90382-2. [DOI] [PubMed] [Google Scholar]
  8. Cossu G., Pacifici M., Adamo S., Bouché M., Molinaro M. TPA-induced inhibition of the expression of differentiative traits in cultured myotubes: dependence on protein synthesis. Differentiation. 1982;21(1):62–65. doi: 10.1111/j.1432-0436.1982.tb01197.x. [DOI] [PubMed] [Google Scholar]
  9. Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
  10. Davis J. S., Clark M. R. Activation of protein kinase in the bovine corpus luteum by phospholipid and Ca2+. Biochem J. 1983 Aug 15;214(2):569–574. doi: 10.1042/bj2140569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eusebi F., Miledi R., Takahashi T. Aequorin-calcium transients in frog twitch muscle fibres. J Physiol. 1983 Jul;340:91–106. doi: 10.1113/jphysiol.1983.sp014751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eusebi F., Molinaro M. Acetylcholine sensitivity in replicating satellite cells. Muscle Nerve. 1984 Jul-Aug;7(6):488–492. doi: 10.1002/mus.880070613. [DOI] [PubMed] [Google Scholar]
  13. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  14. Ito Y., Miledi R., Vincent A., Newsom-Davis J. Acetylcholine receptors and end-plate electrophysiology in myasthenia gravis. Brain. 1978 Jun;101(2):345–368. doi: 10.1093/brain/101.2.345. [DOI] [PubMed] [Google Scholar]
  15. KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaibuchi K., Takai Y., Nishizuka Y. Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase. J Biol Chem. 1981 Jul 25;256(14):7146–7149. [PubMed] [Google Scholar]
  17. Kaibuchi K., Takai Y., Sawamura M., Hoshijima M., Fujikura T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem. 1983 Jun 10;258(11):6701–6704. [PubMed] [Google Scholar]
  18. Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem. 1980 Mar 25;255(6):2273–2276. [PubMed] [Google Scholar]
  19. Kostyuk P. G. Intracellular perfusion of nerve cells and its effects on membrane currents. Physiol Rev. 1984 Apr;64(2):435–454. doi: 10.1152/physrev.1984.64.2.435. [DOI] [PubMed] [Google Scholar]
  20. Land B. R., Podleski T. R., Salpeter E. E., Salpeter M. M. Acetylcholine receptor distribution on myotubes in culture correlated to acetylcholine sensitivity. J Physiol. 1977 Jul;269(1):155–176. doi: 10.1113/jphysiol.1977.sp011897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MILEDI R. Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J Physiol. 1960 Apr;151:24–30. [PMC free article] [PubMed] [Google Scholar]
  22. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  23. TAKEUCHI N. Effects of calcium on the conductance change of the end-plate membrane during the action of transmitter. J Physiol. 1963 Jun;167:141–155. doi: 10.1113/jphysiol.1963.sp007137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takai Y., Kishimoto A., Kikkawa U., Mori T., Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1218–1224. doi: 10.1016/0006-291x(79)91197-5. [DOI] [PubMed] [Google Scholar]
  25. Weinstein I. B., Lee L. S., Fisher P. B., Mufson A., Yamasaki H. Action of phorbol esters in cell culture: mimicry of transformation, altered differentiation, and effects on cell membranes. J Supramol Struct. 1979;12(2):195–208. doi: 10.1002/jss.400120206. [DOI] [PubMed] [Google Scholar]
  26. Zani B. M., Molinaro M. Early alteration induced by tumor promoters on chick embryo muscle cells in culture. Prog Clin Biol Res. 1982;85(Pt B):403–414. [PubMed] [Google Scholar]
  27. Zani B. M., Molinaro M. Enhanced synthesis of a specific protein by 12-O-tetradecanoylphorbol-13-acetate in cultured chick embryo muscle cells. Cancer Res. 1983 Aug;43(8):3748–3753. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES