Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1325–1329. doi: 10.1083/jcb.100.4.1325

An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis

PMCID: PMC2113751  PMID: 3980584

Abstract

The eggs of most or all animals are thought to be activated after fertilization by a transient increase in free cytosolic Ca2+ concentration ([Ca2+]i). We have applied Ca2+-selective microelectrodes to detect such an increase in fertilized eggs of the frog, Xenopus laevis. As observed with an electrode in the animal hemisphere, [Ca2+]i increased from 0.4 to 1.2 microM over the course of 2 min after fertilization, and returned to its original value during the next 10 min. No further changes in [Ca2+]i were detected through the first cleavage division. In eggs impaled with two Ca2+ electrodes, the Ca2+ pulse was observed to travel as a wave from the animal to the vegetal hemisphere, propagating at a rate of approximately 10 microns/s across the animal hemisphere. The apparent delay between the start of the fertilization potential and initiation of the Ca2+ wave at the sperm entry site as approximately 1 min. Through these observations describe only the behavior of subcortical [Ca2+]i, we suggest that our data represent the subcortical extension of the cortical Ca2+ wave thought to trigger cortical granule exocytosis, and we present evidence that both the timing and magnitude of the Ca2+ pulse we observed are consistent with this identity. This first quantification of subcortical [Ca2+]i during fertilization indicates that the Ca2+ transient is available to regulate processes (e.g., protein synthesis) in the subcortical cytosol.

Full Text

The Full Text of this article is available as a PDF (705.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Honerjäger P. Influence of carbon dioxide on level of ionised calcium in squid axons. Nature. 1978 May 11;273(5658):160–161. doi: 10.1038/273160a0. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Whitaker M. J. Influence of ATP and calcium on the cortical reaction in sea urchin eggs. Nature. 1978 Nov 30;276(5687):513–515. doi: 10.1038/276513a0. [DOI] [PubMed] [Google Scholar]
  3. Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
  4. Charbonneau M., Grey R. D. The onset of activation responsiveness during maturation coincides with the formation of the cortical endoplasmic reticulum in oocytes of Xenopus laevis. Dev Biol. 1984 Mar;102(1):90–97. doi: 10.1016/0012-1606(84)90177-5. [DOI] [PubMed] [Google Scholar]
  5. Cross N. L. Initiation of the activation potential by an increase in intracellular calcium in eggs of the frog, Rana pipiens. Dev Biol. 1981 Jul 30;85(2):380–384. doi: 10.1016/0012-1606(81)90269-4. [DOI] [PubMed] [Google Scholar]
  6. Dev I. K., Harvey R. J. Sources of one-carbon units in the folate pathway of Escherichia coli. J Biol Chem. 1982 Feb 25;257(4):1980–1986. [PubMed] [Google Scholar]
  7. Eisen A., Kiehart D. P., Wieland S. J., Reynolds G. T. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J Cell Biol. 1984 Nov;99(5):1647–1654. doi: 10.1083/jcb.99.5.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eisen A., Reynolds G. T. Calcium transients during early development in single starfish (Asterias forbesi) oocytes. J Cell Biol. 1984 Nov;99(5):1878–1882. doi: 10.1083/jcb.99.5.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elinson R. P. Site of sperm entry and a cortical contraction associated with egg activation in the frog Rana pipiens. Dev Biol. 1975 Dec;47(2):257–268. doi: 10.1016/0012-1606(75)90281-x. [DOI] [PubMed] [Google Scholar]
  10. Epel D., Patton C., Wallace R. W., Cheung W. Y. Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell. 1981 Feb;23(2):543–549. doi: 10.1016/0092-8674(81)90150-1. [DOI] [PubMed] [Google Scholar]
  11. Fabiato A., Fabiato F. Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature. 1979 Sep 13;281(5727):146–148. doi: 10.1038/281146a0. [DOI] [PubMed] [Google Scholar]
  12. Gardiner D. M., Grey R. D. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation. J Cell Biol. 1983 Apr;96(4):1159–1163. doi: 10.1083/jcb.96.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gilkey J. C. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes. J Cell Biol. 1983 Sep;97(3):669–678. doi: 10.1083/jcb.97.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jaffe L. F. Calcium explosions as triggers of development. Ann N Y Acad Sci. 1980;339:86–101. doi: 10.1111/j.1749-6632.1980.tb15971.x. [DOI] [PubMed] [Google Scholar]
  15. Jaffe L. F. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983 Oct;99(2):265–276. doi: 10.1016/0012-1606(83)90276-2. [DOI] [PubMed] [Google Scholar]
  16. Moisescu D. G., Ashley C. C., Campbell A. K. Comparative aspects of the calcium-sensitive photoproteins aequorin and obelin. Biochim Biophys Acta. 1975 Jul 8;396(1):133–140. doi: 10.1016/0005-2728(75)90196-6. [DOI] [PubMed] [Google Scholar]
  17. Nuccitelli R., Webb D. J., Lagier S. T., Matson G. B. 31P NMR reveals increased intracellular pH after fertilization in Xenopus eggs. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4421–4425. doi: 10.1073/pnas.78.7.4421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ridgway E. B., Gilkey J. C., Jaffe L. F. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977 Feb;74(2):623–627. doi: 10.1073/pnas.74.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
  20. Schackmann R. W., Eddy E. M., Shapiro B. M. The acrosome reaction of Strongylocentrotus purpuratus sperm. Ion requirements and movements. Dev Biol. 1978 Aug;65(2):483–495. doi: 10.1016/0012-1606(78)90043-x. [DOI] [PubMed] [Google Scholar]
  21. Shimomura O., Johnson F. H. Further data on the specificity of aequorin luminescence to calcium. Biochem Biophys Res Commun. 1973 Jul 17;53(2):490–494. doi: 10.1016/0006-291x(73)90688-8. [DOI] [PubMed] [Google Scholar]
  22. Steinhardt R. A., Alderton J. M. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature. 1982 Jan 14;295(5845):154–155. doi: 10.1038/295154a0. [DOI] [PubMed] [Google Scholar]
  23. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takeichi T., Kubota H. Y. Structural basis of the activation wave in the egg of Xenopus laevis. J Embryol Exp Morphol. 1984 Jun;81:1–16. [PubMed] [Google Scholar]
  25. Tsien R. Y., Rink T. J. Ca2+-selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Methods. 1981 Jun;4(1):73–86. doi: 10.1016/0165-0270(81)90020-0. [DOI] [PubMed] [Google Scholar]
  26. Tsien R. Y., Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta. 1980 Jul;599(2):623–638. doi: 10.1016/0005-2736(80)90205-9. [DOI] [PubMed] [Google Scholar]
  27. Turner P. R., Sheetz M. P., Jaffe L. A. Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature. 1984 Aug 2;310(5976):414–415. doi: 10.1038/310414a0. [DOI] [PubMed] [Google Scholar]
  28. Webb D. J., Nuccitelli R. Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage. J Cell Biol. 1981 Nov;91(2 Pt 1):562–567. doi: 10.1083/jcb.91.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winkler M. M., Steinhardt R. A., Grainger J. L., Minning L. Dual ionic controls for the activation of protein synthesis at fertilization. Nature. 1980 Oct 9;287(5782):558–560. doi: 10.1038/287558a0. [DOI] [PubMed] [Google Scholar]
  30. Wolf D. P. The cortical response in Xenopus laevis ova. Dev Biol. 1974 Sep;40(1):102–115. doi: 10.1016/0012-1606(74)90112-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES