Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1295–1308. doi: 10.1083/jcb.100.4.1295

Cellular uptake and intracellular localization of benzo(a)pyrene by digital fluorescence imaging microscopy

PMCID: PMC2113754  PMID: 3980583

Abstract

Uptake of benzo(a)pyrene by living cultured cells has been visualized in real time using digital fluorescence-imaging microscopy. Benzo(a)pyrene was noncovalently associated with lipoproteins, as a physiologic mode of presentation of the carcinogen to cells. When incubated with either human fibroblasts or murine P388D1 macrophages, benzo(a)pyrene uptake occurred in the absence of endocytosis, with a halftime of approximately 2 min, irrespective of the identity of the delivery vehicles, which were high density lipoproteins, low density lipoproteins, very low density lipoproteins, and 1-palmitoyl-2- oleoylphosphatidylcholine single-walled vesicles. Thus, cellular uptake of benzo(a)pyrene from these hydrophobic donors occurs by spontaneous transfer through the aqueous phase. Moreover, the rate constant for uptake, the extent of uptake, and the intracellular localization of benzo(a)pyrene were identical for both living and fixed cells. Similar rate constants for benzo(a)pyrene efflux from cells to extracellular lipoproteins suggests the involvement of the plasma membrane in the rate-limiting step. The intracellular location of benzo(a)pyrene at equilibrium was coincident with a fluorescent cholesterol analog, N-(7- nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol. Benzo(a)pyrene did not accumulate in acidic compartments, based on acridine orange fluorescence, or in mitochondria, based on rhodamine- 123 fluorescence. When the intracellular lipid volume of isolated mouse peritoneal macrophages was increased by prior incubation of these cells with either acetylated low density lipoproteins or with very low density lipoproteins from a hypertriglyceridemic individual, cellular accumulation of benzo(a)pyrene increased proportionately with increased [1-14C]oleate incorporation into cellular triglycerides and cholesteryl esters. Thus, benzo(a)pyrene uptake by cells is a simple partitioning phenomenon, controlled by the relative lipid volumes of extracellular donor lipoproteins and of cells, and does not involve lipoprotein endocytosis as an obligatory step.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERG N. O. A histological study of masked lipids; stainability, distribution and functional variations. Acta Pathol Microbiol Scand Suppl. 1951;90:1–192. [PubMed] [Google Scholar]
  2. Backes W. L., Hogaboom M., Canady W. J. The true hydrophobicity of microsomal cytochrome P-450 in the rat. Size dependence of the free energy of binding of a series of hydrocarbon substrates from the aqueous phase to the enzyme and to the membrane as derived from spectral binding data. J Biol Chem. 1982 Apr 25;257(8):4063–4070. [PubMed] [Google Scholar]
  3. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benson D. M., Bryan J., Plant A. L., Gotto A. M., Jr, Smith L. C. Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. J Cell Biol. 1985 Apr;100(4):1309–1323. doi: 10.1083/jcb.100.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bresnick E., Liebelt R. A., Stevenson J. G., Madix J. C. The distribution of radioactivity within the hepatic cell after administration of labeled 3-methylcholanthrene. Cancer Res. 1967 Mar;27(3):462–468. [PubMed] [Google Scholar]
  6. Brown M. S., Faust J. R., Goldstein J. L. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J Clin Invest. 1975 Apr;55(4):783–793. doi: 10.1172/JCI107989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979 Sep;82(3):597–613. doi: 10.1083/jcb.82.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CALCUTT G. The distribution of polycyclic hydrocarbons within the cells of some mouse and rat tissues. Br J Cancer. 1958 Mar;12(1):149–160. doi: 10.1038/bjc.1958.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Charlton S. C., Smith L. C. Kinetics of transfer of pyrene and rac-1-oleyl-2-[4-(3-pyrenyl)butanoyl]glycerol between human plasma lipoproteins. Biochemistry. 1982 Aug 17;21(17):4023–4030. doi: 10.1021/bi00260a018. [DOI] [PubMed] [Google Scholar]
  10. Chen T. C., Bradley W. A., Gotto A. M., Jr, Morrisett J. D. Binding of the chemical carcinogen, p-dimethylaminoazobenzene, by human plasma low density lipoproteins. FEBS Lett. 1979 Aug 15;104(2):236–240. doi: 10.1016/0014-5793(79)80822-4. [DOI] [PubMed] [Google Scholar]
  11. Craig I. F., Via D. P., Mantulin W. W., Pownall H. J., Gotto A. M., Jr, Smith L. C. Low density lipoproteins reconstituted with steroids containing the nitrobenzoxadiazole fluorophore. J Lipid Res. 1981 May;22(4):687–696. [PubMed] [Google Scholar]
  12. Damen J., Regts J., Scherphof G. Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition. Biochim Biophys Acta. 1981 Sep 24;665(3):538–545. doi: 10.1016/0005-2760(81)90268-x. [DOI] [PubMed] [Google Scholar]
  13. DiPaolo J. A., Banerjee M. R. Autoradiographic demonstration of H-3-methylcholanthrene labeling of nuclear components of Syrian hamster cells in vitro. Proc Natl Acad Sci U S A. 1967 Jul;58(1):123–126. doi: 10.1073/pnas.58.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Diamond L., Defendi V., Brookes P. The interaction of 7,12-dimethylbenz(a)anthracene with cells sensitive and resistant to toxicity induced by this carcinogen. Cancer Res. 1967 May;27(5):890–897. [PubMed] [Google Scholar]
  15. Doody M. C., Pownall H. J., Kao Y. J., Smith L. C. Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry. 1980 Jan 8;19(1):108–116. doi: 10.1021/bi00542a017. [DOI] [PubMed] [Google Scholar]
  16. Ebel R. E., O'Keeffe D. H., Peterson J. A. Substrate binding to hepatic microsomal cytochrome P-450. Influence of the microsomal membrane. J Biol Chem. 1978 Jun 10;253(11):3888–3897. [PubMed] [Google Scholar]
  17. Ekelman K. B., Milo G. E. Cellular uptake, transport, and macromolecular binding of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene by human cells in vitro. Cancer Res. 1978 Sep;38(9):3026–3032. [PubMed] [Google Scholar]
  18. Gehly E. B., Heidelberger C. Metabolic activation of benzo(a)pyrene by transformable and nontransformable C3H mouse fibroblasts in culture. Cancer Res. 1982 Jul;42(7):2697–2704. [PubMed] [Google Scholar]
  19. Gelboin H. V. Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev. 1980 Oct;60(4):1107–1166. doi: 10.1152/physrev.1980.60.4.1107. [DOI] [PubMed] [Google Scholar]
  20. Gianturco S. H., Bradley W. A., Gotto A. M., Jr, Morrisett J. D., Peavy D. L. Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest. 1982 Jul;70(1):168–178. doi: 10.1172/JCI110590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grubbs C. J., Moon R. C. Transport of orally administered 9,10-dimethyl-1,2-benzanthracene in the Sprague-Dawley rat. Cancer Res. 1973 Jul;33(7):1785–1789. [PubMed] [Google Scholar]
  22. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kocan R. M., Chi E. Y., Eriksen N., Benditt E. P., Landolt M. L. Sequestration and release of polycyclic aromatic hydrocarbons by vertebrate cells in vitro. Environ Mutagen. 1983;5(5):643–656. doi: 10.1002/em.2860050503. [DOI] [PubMed] [Google Scholar]
  24. Kruth H. S., Avigan J., Gamble W., Vaughan M. Effect of cell density on binding and uptake of low density lipoprotein by human fibroblasts. J Cell Biol. 1979 Dec;83(3):588–594. doi: 10.1083/jcb.83.3.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kruth H. S., Blanchette-Mackie J., Avigan J., Gamble W., Vaughan M. Subcellular localization and quantification of cholesterol in cultured human fibroblasts exposed to human low density lipoprotein. J Lipid Res. 1982 Nov;23(8):1128–1135. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lakowicz J. R., Bevan D. R., Riemer S. C. Transport of a carcinogen, benzo[a]pyrene, from particulates to lipid bilayers: a model for the fate of particle-adsorbed polynuclear aromatic hydrocarbons which are retained in the lungs. Biochim Biophys Acta. 1980 May 7;629(2):243–258. doi: 10.1016/0304-4165(80)90098-7. [DOI] [PubMed] [Google Scholar]
  28. Lu A. Y., Jerina D. M., Levin W. Liver microsomal epoxide hydrase. J Biol Chem. 1977 Jun 10;252(11):3715–3723. [PubMed] [Google Scholar]
  29. Miller A. G., Whitlock J. P., Jr Efficient metabolism of benzo(a)pyrene at nanomolar concentrations by intact murine hepatoma cells. Cancer Res. 1982 Nov;42(11):4473–4478. [PubMed] [Google Scholar]
  30. Nemoto N., Takayama S. Modulation of microsome-mediated benzo[a]pyrene-metabolism by serum. Carcinogenesis. 1982;3(4):359–362. doi: 10.1093/carcin/3.4.359. [DOI] [PubMed] [Google Scholar]
  31. Pitas R. E., Innerarity T. L., Weinstein J. N., Mahley R. W. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy. Arteriosclerosis. 1981 May-Jun;1(3):177–185. doi: 10.1161/01.atv.1.3.177. [DOI] [PubMed] [Google Scholar]
  32. Plant A. L., Pownall H. J., Smith L. C. Transfer of polycyclic aromatic hydrocarbons between model membranes: relation to carcinogenicity. Chem Biol Interact. 1983 Jun;44(3):237–246. doi: 10.1016/0009-2797(83)90052-2. [DOI] [PubMed] [Google Scholar]
  33. Poznansky M. J., Czekanski S. Cholesterol exchange as a function of cholesterol/phospholipid mole ratios. Biochem J. 1979 Mar 1;177(3):989–991. doi: 10.1042/bj1770989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. ROBBINS E., MARCUS P. I., GONATAS N. K. DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION. II. DYE-INDUCED ULTRASTRUCTURAL CHANGES IN MULTIVESICULAR BODIES (ACRIDINE ORANGE PARTICLES). J Cell Biol. 1964 Apr;21:49–62. doi: 10.1083/jcb.21.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Remsen J. F., Shireman R. B. Effect of low-density lipoprotein on the incorporation of benzo(a)pyrene by cultured cells. Cancer Res. 1981 Aug;41(8):3179–3185. [PubMed] [Google Scholar]
  36. Salmon J. M., Thierry C., Serrou B., Viallet P. Slower step of the polycyclic aromatic hydrocarbons metabolism: kinetic data from microspectrofluorometric techniques. Biomedicine. 1981 Sep;34(2):102–107. [PubMed] [Google Scholar]
  37. Selkirk J. K., Croy R. G., Whitlock J. P., Jr, Gelboin H. V. In vitro metabolism of benzo(a)pyrene by human liver microsomes and lymphocytes. Cancer Res. 1975 Dec;35(12):3651–3655. [PubMed] [Google Scholar]
  38. Shires T. K. A fluorescence microscopic study of methodologic effects on the intranuclear distribution of benzo(alpha)pyrene. Cancer Res. 1969 Jun;29(6):1277–1287. [PubMed] [Google Scholar]
  39. Shires T. K. An evaluation of possible intracellular nucleic acid quenching of carcinogenic hydrocarbon fluorescence. Am J Anat. 1966 Nov;119(3):499–519. doi: 10.1002/aja.1001190309. [DOI] [PubMed] [Google Scholar]
  40. Shu H. P., Bymun E. N. Systemic excretion of benzo(a)pyrene in the control and microsomally induced rat: the influence of plasma lipoproteins and albumin as carrier molecules. Cancer Res. 1983 Feb;43(2):485–490. [PubMed] [Google Scholar]
  41. Shu H. P., Nichols A. V. Benzo(a)pyrene uptake by human plasma lipoproteins in vitro. Cancer Res. 1979 Apr;39(4):1224–1230. [PubMed] [Google Scholar]
  42. Siemens A., Walter R., Liaw L. H., Berns M. W. Laser-stimulated fluorescence of submicrometer regions within single mitochondria of rhodamine-treated myocardial cells in culture. Proc Natl Acad Sci U S A. 1982 Jan;79(2):466–470. doi: 10.1073/pnas.79.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith L. C., Pownall H. J., Gotto A. M., Jr The plasma lipoproteins: structure and metabolism. Annu Rev Biochem. 1978;47:751–757. doi: 10.1146/annurev.bi.47.070178.003535. [DOI] [PubMed] [Google Scholar]
  44. Stora C. Cellular localization of chemical carcinogens studied by fluorescence microscopy. Oncology. 1980;37(1):20–22. doi: 10.1159/000225394. [DOI] [PubMed] [Google Scholar]
  45. WIEST W. G., HEIDELBERGER C. The interaction of carcinogenic hydrocarbons with tissue constituents. I. Methods. Cancer Res. 1953 Mar;13(3):246–249. [PubMed] [Google Scholar]
  46. WOODHOUSE D. L. Experiments on the interaction of polycyclic hydrocarbons with epidermal constituents. Br J Cancer. 1954 Jun;8(2):346–352. doi: 10.1038/bjc.1954.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES