Abstract
Cartilage-derived growth factor (CDGF), a cationic polypeptide of approximately 18,000 mol wt, was prepared from bovine articular cartilage; other sources were bovine and human scapular and costal cartilage. Previous studies have shown that CDGF stimulates the proliferation of cultured mouse fibroblasts as well as chondrocytes and endothelial cells from various sources. In this study, CDGF was shown to stimulate dose-dependently the accumulation of DNA and collagen by rat embryo fibroblasts and a population of fibroblasts derived from granulation tissue. CDGF also stimulated the proliferation of cultured bovine capillary endothelial cells dose-dependently. To evaluate the effects of CDGF in vivo, we implanted polyvinyl alcohol sponges subcutaneously in rats. 6 d postimplantation, sponges were injected with 300 micrograms of partially purified CDGF, a dose which takes into account the cell numbers in the sponges as compared with cell cultures. CDGF rapidly disappeared from the sponges and only approximately 10% of the initial dose was present at 4 h. Despite its transient presence, CDGF caused a relative increase in sponge DNA content of 2.6-fold at 48 h and 2.4-fold at 72 h. We repeated the sponge experiment by using 500- ng injections of CDGF purified to near homogeneity by heparin-Sepharose chromatography. Purified CDGF caused significant increases in sponge collagen, protein, and DNA content at 48 and 72 h after a single injection. The effects of CDGF were abolished by heat and unaffected by reduction of disulfide linkages. Morphologically, CDGF did not evoke an inflammatory response, and its effect on proliferating endothelial cells and fibroblasts was, therefore, probably direct. However, increases in DNA content of sponges could not be fully accounted for by increased DNA synthesis, which suggests that recruitment may be an important component of the in vivo response. Taken together, the effects of CDGF on cultured cells and granulation tissue suggest that the sustained presence of CDGF in vivo may greatly enhance its effects upon wound repair.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antoniades H. N., Owen A. J. Growth factors and regulation of cell growth. Annu Rev Med. 1982;33:445–463. doi: 10.1146/annurev.me.33.020182.002305. [DOI] [PubMed] [Google Scholar]
- Antoniades H. N., Scher C. D., Stiles C. D. Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1809–1813. doi: 10.1073/pnas.76.4.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azizkhan J. C., Khagsbrun M. Chondrocytes contain a growth factor that is localized in the nucleus and is associated with chromatin. Proc Natl Acad Sci U S A. 1980 May;77(5):2762–2766. doi: 10.1073/pnas.77.5.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buntrock P., Buntrock M., Marx I., Kranz D., Jentzsch K. D., Heder G. Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. III. Electron microscopy, autoradiography, and ultrastructural autoradiography of granulation tissue. Exp Pathol. 1984;26(4):247–254. doi: 10.1016/s0232-1513(84)80057-2. [DOI] [PubMed] [Google Scholar]
- Buntrock P., Jentzsch K. D., Heder G. Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. I. Quantitative and biochemical studies into formation of granulation tissue. Exp Pathol. 1982;21(1):46–53. doi: 10.1016/s0232-1513(82)80051-0. [DOI] [PubMed] [Google Scholar]
- Buntrock P., Jentzsch K. D., Heder G. Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. II. Histological and morphometric examination of cells and capillaries. Exp Pathol. 1982;21(1):62–67. doi: 10.1016/s0232-1513(82)80054-6. [DOI] [PubMed] [Google Scholar]
- Folkman J., Haudenschild C. C., Zetter B. R. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5217–5221. doi: 10.1073/pnas.76.10.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gospodarowicz D., Greenburg G., Bialecki H., Zetter B. R. Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro. 1978 Jan;14(1):85–118. doi: 10.1007/BF02618177. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Moran J. S. Growth factors in mammalian cell culture. Annu Rev Biochem. 1976;45:531–558. doi: 10.1146/annurev.bi.45.070176.002531. [DOI] [PubMed] [Google Scholar]
- Gross J. L., Moscatelli D., Jaffe E. A., Rifkin D. B. Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol. 1982 Dec;95(3):974–981. doi: 10.1083/jcb.95.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
- Johnson-Wint B., Hollis S. A rapid in situ deoxyribonucleic acid assay for determining cell number in culture and tissue. Anal Biochem. 1982 May 15;122(2):338–344. doi: 10.1016/0003-2697(82)90292-5. [DOI] [PubMed] [Google Scholar]
- Klagsbrun M., Langer R., Levenson R., Smith S., Lillehei C. The stimulation of DNA synthesis and cell division in chondrocytes and 3T3 cells by a growth factor isolated from cartilage. Exp Cell Res. 1977 Mar 1;105(1):99–108. doi: 10.1016/0014-4827(77)90155-0. [DOI] [PubMed] [Google Scholar]
- Klagsbrun M., Smith S. Purification of a cartilage-derived growth factor. J Biol Chem. 1980 Nov 25;255(22):10859–10866. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Murray J. B., Brown L., Langer R., Klagsburn M. A micro sustained release system for epidermal growth factor. In Vitro. 1983 Oct;19(10):743–748. doi: 10.1007/BF02618093. [DOI] [PubMed] [Google Scholar]
- Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
- Ross R., Vogel A. The platelet-derived growth factor. Cell. 1978 Jun;14(2):203–210. doi: 10.1016/0092-8674(78)90107-1. [DOI] [PubMed] [Google Scholar]
- Seppä H., Grotendorst G., Seppä S., Schiffmann E., Martin G. R. Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol. 1982 Feb;92(2):584–588. doi: 10.1083/jcb.92.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shing Y., Folkman J., Sullivan R., Butterfield C., Murray J., Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984 Mar 23;223(4642):1296–1299. doi: 10.1126/science.6199844. [DOI] [PubMed] [Google Scholar]
- Tolstoshev P., Berg R. A., Rennard S. I., Bradley K. H., Trapnell B. C., Crystal R. G. Procollagen production and procollagen messenger RNA levels and activity in human lung fibroblasts during periods of rapid and stationary growth. J Biol Chem. 1981 Mar 25;256(6):3135–3140. [PubMed] [Google Scholar]
- Woodward S. C., Herrmann J. B. Stimulation of fibroplasia in rats by bovine cartilage powder. Arch Surg. 1968 Feb;96(2):189–199. doi: 10.1001/archsurg.1968.01330200027005. [DOI] [PubMed] [Google Scholar]