Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1309–1323. doi: 10.1083/jcb.100.4.1309

Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells

PMCID: PMC2113759  PMID: 3920227

Abstract

Photobleaching and related photochemical processes are recognized experimental barriers to quantification of fluorescence by microscopy. We have measured the kinetics of photobleaching of fluorophores in living and fixed cells and in microemulsions, and have demonstrated the spatial variability of these processes within individual cells. An inverted fluorescence microscope and a high-sensitivity camera, together with high-speed data acquisition by a computer-controlled image processor, have been used to control precisely exposure time to excitation light and to record images. To improve the signal-to-noise ratio, 32 digital images were integrated. After correction for spatial variations in camera sensitivity and background fluorescence, the images of the relative fluorescence intensities for 0.065 micron2 areas in the object plane were obtained. To evaluate photobleaching objectively, an algorithm was developed to fit a three-parameter exponential equation to 20 images recorded from the same microscope field as a function of illumination time. The results of this analysis demonstrated that the photobleaching process followed first-order reaction kinetics with rate constants that were spatially heterogeneous and varied, within the same cell, between 2- and 65-fold, depending on the fluorophore. The photobleaching rate constants increased proportionally with increasing excitation intensity and, for benzo(a)pyrene, were independent of probe concentration over three orders of magnitude (1.25 microM to 1.25 mM). The propensity to photobleach was different with each fluorophore. Under the cellular conditions used in these studies, the average rates of photobleaching decreased in this order: N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor- 5-cholen-22-amine-3 beta-ol greater than acridine orange greater than rhodamine-123 greater than benzo(a)pyrene greater than fluorescein greater than tetramethylrhodamine greater than 1,1'dioctadecyl- 3,3,3',3'-tetramethylindocarbocyanine. The photobleaching appears to be an oxidation reaction, in that the addition of saturated solutions of Na2S2O5 to mineral oil microemulsions eliminated photobleaching of N-(7- nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol or benzo(a)pyrene. We identified experimental conditions to observe, without detectable photobleaching, fluorophores in living cells, which can not be studied anaerobically. Useful images were obtained when excitation light was reduced to eliminate photobleaching, as determined from zero-time images calculated from the exponential fit routine.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt-Jovin D. J., Jovin T. M. Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem. 1977 Jul;25(7):585–589. doi: 10.1177/25.7.70450. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson D. M., Knopp J. A., Longmuir I. S. Intracellular oxygen measurements of mouse liver cells using quantitative fluorescence video microscopy. Biochim Biophys Acta. 1980 Jun 10;591(1):187–197. doi: 10.1016/0005-2728(80)90232-7. [DOI] [PubMed] [Google Scholar]
  4. Berns G. S., Berns M. W. Computer-based tracking of living cells. Exp Cell Res. 1982 Nov;142(1):103–109. doi: 10.1016/0014-4827(82)90414-1. [DOI] [PubMed] [Google Scholar]
  5. Berns M. W., Aist J., Edwards J., Strahs K., Girton J., McNeill P., Rattner J. B., Kitzes M., Hammer-Wilson M., Liaw L. H. Laser microsurgery in cell and developmental biology. Science. 1981 Jul 31;213(4507):505–513. doi: 10.1126/science.7017933. [DOI] [PubMed] [Google Scholar]
  6. Bradbury S. Commercial image analysers and the characterization of microscopical images. J Microsc. 1983 Aug;131(Pt 2):203–210. doi: 10.1111/j.1365-2818.1983.tb04246.x. [DOI] [PubMed] [Google Scholar]
  7. Calmettes P. P., Berns M. W. Laser-induced multiphoton processes in living cells. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7197–7199. doi: 10.1073/pnas.80.23.7197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craig I. F., Via D. P., Mantulin W. W., Pownall H. J., Gotto A. M., Jr, Smith L. C. Low density lipoproteins reconstituted with steroids containing the nitrobenzoxadiazole fluorophore. J Lipid Res. 1981 May;22(4):687–696. [PubMed] [Google Scholar]
  9. Doody M. C., Pownall H. J., Kao Y. J., Smith L. C. Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry. 1980 Jan 8;19(1):108–116. doi: 10.1021/bi00542a017. [DOI] [PubMed] [Google Scholar]
  10. Evans R. M., Davies P. J., Costa M. Video time-lapse microscopy of phagocytosis and intracellular fate of crystalline nickel sulfide particles in cultured mammalian cells. Cancer Res. 1982 Jul;42(7):2729–2735. [PubMed] [Google Scholar]
  11. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  12. Hawkes S. P., Bartholomew J. C. Quantitative determination of transformed cells in a mixed population by stimultaneous fluorescence analysis of cell surface and DNA an individual cells. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1626–1630. doi: 10.1073/pnas.74.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson G. D., Davidson R. S., McNamee K. C., Russell G., Goodwin D., Holborow E. J. Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. J Immunol Methods. 1982 Dec 17;55(2):231–242. doi: 10.1016/0022-1759(82)90035-7. [DOI] [PubMed] [Google Scholar]
  14. Johnson L. V., Walsh M. L., Bockus B. J., Chen L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981 Mar;88(3):526–535. doi: 10.1083/jcb.88.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerker M., Van Dilla M. A., Brunsting A., Kratohvil J. P., Hsu P., Wang D. S., Gray J. W., Langlois R. G. Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content? Cytometry. 1982 Sep;3(2):71–78. doi: 10.1002/cyto.990030202. [DOI] [PubMed] [Google Scholar]
  16. Khan A. U., Kasha M. Direct spectroscopic observation of singlet oxygen emission at 1268 nm excited by sensitizing dyes of biological interest in liquid solution. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6047–6049. doi: 10.1073/pnas.76.12.6047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kohen E., Kohen C., Hirschberg J. G., Wouters A., Thorell B. Multisite topographic microfluorometry of intracellular and exogenous fluorochromes. Photochem Photobiol. 1978 Mar;27(3):259–268. doi: 10.1111/j.1751-1097.1978.tb07598.x. [DOI] [PubMed] [Google Scholar]
  18. Kohen E., Kohen C. Rapid automated multichannel microspectrofluorometry. A new method for studies on the cell-to-cell transfer of molecules. Exp Cell Res. 1977 Jul;107(2):261–268. doi: 10.1016/0014-4827(77)90348-2. [DOI] [PubMed] [Google Scholar]
  19. Kohen E., Kohen C., Thorell B., Bartick P. A topographic analysis of metabolic pathways in single living cells by multisite microfluorometry. Exp Cell Res. 1979 Mar 1;119(1):23–30. doi: 10.1016/0014-4827(79)90331-8. [DOI] [PubMed] [Google Scholar]
  20. Lemke P. A., Kugleman B., Morimoto H., Jacobs E. C., Ellison J. Fluorescent staining of fungal nuclei with a benzimidazol derivative. J Cell Sci. 1978 Feb;29:77–84. doi: 10.1242/jcs.29.1.77. [DOI] [PubMed] [Google Scholar]
  21. Martin P. M., Magdelenat H. P., Benyahia B., Rigaud O., Katzenellenbogen J. A. New approach for visualizing estrogen receptors in target cells using inherently fluorescent ligands and image intensification. Cancer Res. 1983 Oct;43(10):4956–4965. [PubMed] [Google Scholar]
  22. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Packard B. S., Karukstis K. K., Klein M. P. Intracellular dye heterogeneity determined by fluorescence lifetimes. Biochim Biophys Acta. 1984 Jan 11;769(1):201–208. doi: 10.1016/0005-2736(84)90024-5. [DOI] [PubMed] [Google Scholar]
  24. Peters R., Brünger A., Schulten K. Continuous fluorescence microphotolysis: A sensitive method for study of diffusion processes in single cells. Proc Natl Acad Sci U S A. 1981 Feb;78(2):962–966. doi: 10.1073/pnas.78.2.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Plant A. L., Benson D. M., Smith L. C. Cellular uptake and intracellular localization of benzo(a)pyrene by digital fluorescence imaging microscopy. J Cell Biol. 1985 Apr;100(4):1295–1308. doi: 10.1083/jcb.100.4.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Platt J. L., Michael A. F. Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem. 1983 Jun;31(6):840–842. doi: 10.1177/31.6.6341464. [DOI] [PubMed] [Google Scholar]
  27. Podgorski G. T., Longmuir I. S., Knopp J. A., Benson D. M. Use of an encapsulated fluorescent probe to measure intracellular PO2. J Cell Physiol. 1981 Jun;107(3):329–334. doi: 10.1002/jcp.1041070304. [DOI] [PubMed] [Google Scholar]
  28. ROBBINS E., MARCUS P. I., GONATAS N. K. DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION. II. DYE-INDUCED ULTRASTRUCTURAL CHANGES IN MULTIVESICULAR BODIES (ACRIDINE ORANGE PARTICLES). J Cell Biol. 1964 Apr;21:49–62. doi: 10.1083/jcb.21.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roos K. P., Brady A. J. Individual sarcomere length determination from isolated cardiac cells using high-resolution optical microscopy and digital image processing. Biophys J. 1982 Dec;40(3):233–244. doi: 10.1016/S0006-3495(82)84478-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salmon J. M., Kohen E., Viallet P., Hirschberg J. G., Wouters A. W., Kohen C., Thorell B. Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem Photobiol. 1982 Nov;36(5):585–593. doi: 10.1111/j.1751-1097.1982.tb04420.x. [DOI] [PubMed] [Google Scholar]
  31. Stoward P. J., Ploem J. S. The histochemical basis of quantitative histology. J Microsc. 1982 Oct;128(Pt 1):49–56. doi: 10.1111/j.1365-2818.1982.tb00436.x. [DOI] [PubMed] [Google Scholar]
  32. Tanasugarn L., McNeil P., Reynolds G. T., Taylor D. L. Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH. J Cell Biol. 1984 Feb;98(2):717–724. doi: 10.1083/jcb.98.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tanke H. J., van Driel-Kulker A. M., Cornelisse C. J., Ploem J. S. Combined flow cytometry and image cytometry of the same cytological sample. J Microsc. 1983 Apr;130(Pt 1):11–22. doi: 10.1111/j.1365-2818.1983.tb04194.x. [DOI] [PubMed] [Google Scholar]
  34. Taylor D. L., Wang Y. L. Fluorescently labelled molecules as probes of the structure and function of living cells. Nature. 1980 Apr 3;284(5755):405–410. doi: 10.1038/284405a0. [DOI] [PubMed] [Google Scholar]
  35. Vaughan W. M., Weber G. Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry. 1970 Feb 3;9(3):464–473. doi: 10.1021/bi00805a003. [DOI] [PubMed] [Google Scholar]
  36. Walter R. J., Berns M. W. Computer-enhanced video microscopy: digitally processed microscope images can be produced in real time. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6927–6931. doi: 10.1073/pnas.78.11.6927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wied G. L., Bartels P. H., Dytch H. E., Pishotta F. T., Bibbo M. Rapid high-resolution cytometry. Anal Quant Cytol. 1982 Dec;4(4):257–262. [PubMed] [Google Scholar]
  38. Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]
  39. Wolf D. E., Edidin M., Dragsten P. R. Effect of bleaching light on measurements of lateral diffusion in cell membranes by the fluorescence photobleaching recovery method. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2043–2045. doi: 10.1073/pnas.77.4.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wrigley N. G., Chillingworth R. K., Brown E., Barrett A. N. Multiple image integration: a new method in electron microscopy. J Microsc. 1982 Aug;127(Pt 2):201–208. doi: 10.1111/j.1365-2818.1982.tb00413.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES