Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1157–1166. doi: 10.1083/jcb.100.4.1157

Distributions of vimentin and desmin in developing chick myotubes in vivo. II. Immunoelectron microscopic study

PMCID: PMC2113763  PMID: 3884634

Abstract

The distribution of the intermediate filament proteins vimentin and desmin in developing and mature myotubes in vivo was studied by single and double immunoelectron microscopic labeling of ultrathin frozen sections of iliotibialis muscle in 7-21-d-old chick embryos, and neonatal and 1-d-old postnatal chicks. This work is an extension of our previous immunofluorescence studies of the same system (Tokuyasu, K. T., P. A. Maher and S. J. Singer, 1984, J. Cell Biol., 98:1961-1972). In immature myotubes of 7-11-d embryos, significant labeling for desmin and vimentin was found only in intermediate filaments, and these proteins coexisted in the same individual filaments. Each of the two proteins was present in irregular clusters along the entire length of a filament. No exclusively vimentin- or desmin-containing filaments were observed at this stage. In the early myotubes, the intermediate filaments were essentially all longitudinally oriented, even when they contained three times as much desmin as vimentin. No special relationship was recognized between the dispositions of the filaments and the organization of the myofibrils. Occasionally, several myofibrils were already aligned in lateral registry at this early stage, but labeling for desmin and vimentin was largely absent at the level of the Z bands. Instead, the Z bands appeared to be covered by elements of the sarcoplasmic reticulum. The confinement of intermediate filaments to the level of the Z bands occurred in the myotubes of later embryos after the extensive lateral registry of the Z bands. Thus, intermediate filaments are unlikely to play a primary role in producing the lateral registration of myofibrils during myogenesis, but may be important in determining the polarization of the early myotube and the alignment of its organelles. Throughout the development of myotubes, desmin and vimentin remained in the form of intermediate filaments, although the number of filaments per unit volume of myotube appeared to be reduced as myofibrils increased in number in maturing myotubes. This observation indicated that the transverse orientation of intermediate filaments in mature myotubes does not result from the de novo polymerization of subunits from Z band to Z band, but a continuous shifting of the positions and directions of intact filaments.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett G. S., Fellini S. A., Toyama Y., Holtzer H. Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J Cell Biol. 1979 Aug;82(2):577–584. doi: 10.1083/jcb.82.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fischman D. A. An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol. 1967 Mar;32(3):557–575. doi: 10.1083/jcb.32.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gard D. L., Lazarides E. The synthesis and distribution of desmin and vimentin during myogenesis in vitro. Cell. 1980 Jan;19(1):263–275. doi: 10.1016/0092-8674(80)90408-0. [DOI] [PubMed] [Google Scholar]
  4. Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geisler N., Weber K. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1982;1(12):1649–1656. doi: 10.1002/j.1460-2075.1982.tb01368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldspink G. Changes in striated muscle fibres during contraction and growth with particular reference to myofibril splitting. J Cell Sci. 1971 Jul;9(1):123–137. doi: 10.1242/jcs.9.1.123. [DOI] [PubMed] [Google Scholar]
  7. Goldspink G. The proliferation of myofibrils during muscle fibre growth. J Cell Sci. 1970 Mar;6(2):593–603. doi: 10.1242/jcs.6.2.593. [DOI] [PubMed] [Google Scholar]
  8. Granger B. L., Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell. 1979 Dec;18(4):1053–1063. doi: 10.1016/0092-8674(79)90218-6. [DOI] [PubMed] [Google Scholar]
  9. Granger B. L., Lazarides E. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell. 1978 Dec;15(4):1253–1268. doi: 10.1016/0092-8674(78)90051-x. [DOI] [PubMed] [Google Scholar]
  10. Holtzer H., Bennett G. S., Tapscott S. J., Croop J. M., Toyama Y. Intermediate-size filaments: changes in synthesis and distribution in cells of the myogenic and neurogenic lineages. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):317–329. doi: 10.1101/sqb.1982.046.01.033. [DOI] [PubMed] [Google Scholar]
  11. Ip W., Danto S. I., Fischman D. A. Detection of desmin-containing intermediate filaments in cultured muscle and nonmuscle cells by immunoelectron microscopy. J Cell Biol. 1983 Feb;96(2):401–408. doi: 10.1083/jcb.96.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kelly D. E. Myofibrillogenesis and Z-band differentiation. Anat Rec. 1969 Mar;163(3):403–425. doi: 10.1002/ar.1091630305. [DOI] [PubMed] [Google Scholar]
  14. Nelson W. J., Traub P. Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin. J Biol Chem. 1982 May 25;257(10):5544–5553. [PubMed] [Google Scholar]
  15. Osborn M., Geisler N., Shaw G., Sharp G., Weber K. Intermediate filaments. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):413–429. doi: 10.1101/sqb.1982.046.01.040. [DOI] [PubMed] [Google Scholar]
  16. Page S. G. Structure and some contractile properties of fast and slow muscles of the chicken. J Physiol. 1969 Nov;205(1):131–145. doi: 10.1113/jphysiol.1969.sp008956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Price M. G., Sanger J. W. Intermediate filaments in striated muscle. A review of structural studies in embryonic and adult skeletal and cardiac muscle. Cell Muscle Motil. 1983;3:1–40. [PubMed] [Google Scholar]
  18. Quinlan R. A., Franke W. W. Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured baby hamster kidney cells demonstrated by chemical crosslinking. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3452–3456. doi: 10.1073/pnas.79.11.3452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sharp G., Osborn M., Weber K. Occurrence of two different intermediate filament proteins in the same filament in situ within a human glioma cell line. An immunoelectron microscopical study. Exp Cell Res. 1982 Oct;141(2):385–395. doi: 10.1016/0014-4827(82)90227-0. [DOI] [PubMed] [Google Scholar]
  20. Shear C. R. Cross-sectional myofibre and myofibril growth in immobilized developing skeletal muscle. J Cell Sci. 1978 Feb;29:297–312. doi: 10.1242/jcs.29.1.297. [DOI] [PubMed] [Google Scholar]
  21. Steinert P. M., Idler W. W., Cabral F., Gottesman M. M., Goldman R. D. In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3692–3696. doi: 10.1073/pnas.78.6.3692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steinert P. M., Idler W. W., Zimmerman S. B. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol. 1976 Dec 15;108(3):547–567. doi: 10.1016/s0022-2836(76)80136-2. [DOI] [PubMed] [Google Scholar]
  23. Tokuyasu K. T., Dutton A. H., Geiger B., Singer S. J. Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7619–7623. doi: 10.1073/pnas.78.12.7619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tokuyasu K. T., Dutton A. H., Singer S. J. Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle. J Cell Biol. 1983 Jun;96(6):1736–1742. doi: 10.1083/jcb.96.6.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tokuyasu K. T., Dutton A. H., Singer S. J. Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle. J Cell Biol. 1983 Jun;96(6):1727–1735. doi: 10.1083/jcb.96.6.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  27. Tokuyasu K. T., Maher P. A., Singer S. J. Distributions of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study. J Cell Biol. 1984 Jun;98(6):1961–1972. doi: 10.1083/jcb.98.6.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tokuyasu K. T. Present state of immunocryoultramicrotomy. J Histochem Cytochem. 1983 Jan;31(1A):164–167. [PubMed] [Google Scholar]
  29. Tokuyasu K. T. Visualization of longitudinally-oriented intermediate filaments in frozen sections of chicken cardiac muscle by a new staining method. J Cell Biol. 1983 Aug;97(2):562–565. doi: 10.1083/jcb.97.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Traub P., Nelson W. J. Occurrence in various mammalian cells and tissues of the Ca 2+ activated protease specific for the intermediate-sized filament proteins vimentin and desmin. Eur J Cell Biol. 1981 Dec;26(1):61–67. [PubMed] [Google Scholar]
  31. Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Warren R. H. The effect of colchicine on myogenesis in vivo in Rana pipiens and Rhodnius prolixus (Hemiptera). J Cell Biol. 1968 Dec;39(3):544–555. doi: 10.1083/jcb.39.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES