Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Apr 1;100(4):1273–1283. doi: 10.1083/jcb.100.4.1273

Acrosomal reaction of the Thyone sperm. III. The relationship between actin assembly and water influx during the extension of the acrosomal process

PMCID: PMC2113773  PMID: 3920226

Abstract

In an attempt to investigate the role of water influx in the extension of the acrosomal process of Thyone sperm, we induced the acrosomal reaction in sea water whose osmolarity varied from 50 to 150% of that of sea water. (a) Video sequences of the elongation of the acrosomal processes were made; plots of the length of the acrosomal process as a function of (time)1/2 produced a straight line except at the beginning of elongation and at the end in both hypotonic and hypertonic sea water (up to 1.33 times the osmolarity of sea water), although the rate of elongation was fastest in hypotonic sea water and was progressively slower as the tonicity was raised. (b) Close examination of the video sequences revealed that regardless of the tonicity of the sea water, the morphology of the acrosomal processes were similar. (c) From thin sections of fixed sperm, the amount of actin polymerization that takes place is roughly coupled to the length of the acrosomal process formed so that sperm with short processes only polymerize a portion of the actin that must be present in those sperm. From these facts we conclude that the influx of water and the release of actin monomers from their storage form in the profilactin (so that these monomers can polymerize) are coupled. The exact role of water influx, why it occurs, and whether it could contribute to the extension of the acrosomal process by a hydrostatic pressure mechanism is discussed.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begg D. A., Rebhun L. I., Hyatt H. Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin filament bundle formation. J Cell Biol. 1982 Apr;93(1):24–32. doi: 10.1083/jcb.93.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantino M. E., Schackmann R. W., Johnson D. E. Changes in subcellular elemental distributions accompanying the acrosome reaction in sea urchin sperm. J Exp Zool. 1983 May;226(2):255–268. doi: 10.1002/jez.1402260211. [DOI] [PubMed] [Google Scholar]
  3. Christen R., Schackmann R. W., Shapiro B. M. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem. 1982 Dec 25;257(24):14881–14890. [PubMed] [Google Scholar]
  4. DAN J., OHORI Y., KUSHIDA H. STUDIES ON THE ACROSOME. VII. FORMATION OF THE ACROSOMAL PROCESS IN SEA URCHIN SPERMATOZOA. J Ultrastruct Res. 1964 Dec;11:508–524. doi: 10.1016/s0022-5320(64)80079-4. [DOI] [PubMed] [Google Scholar]
  5. Dan J. C., Hagiwara Y. Studies on the acrosome. IX. Course of acrosome reaction in the starfish. J Ultrastruct Res. 1967 Jun;18(5):562–579. doi: 10.1016/s0022-5320(67)80203-x. [DOI] [PubMed] [Google Scholar]
  6. Harris A. K. Cell surface movements related to cell locomotion. Ciba Found Symp. 1973;14:3–26. doi: 10.1002/9780470719978.ch2. [DOI] [PubMed] [Google Scholar]
  7. Ikkai T., Ooi T. The effects of pressure on F-G transformation of actin. Biochemistry. 1966 May;5(5):1551–1560. doi: 10.1021/bi00869a015. [DOI] [PubMed] [Google Scholar]
  8. Inoué S., Tilney L. G. Acrosomal reaction of thyone sperm. I. Changes in the sperm head visualized by high resolution video microscopy. J Cell Biol. 1982 Jun;93(3):812–819. doi: 10.1083/jcb.93.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Inoué S. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J Cell Biol. 1981 May;89(2):346–356. doi: 10.1083/jcb.89.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schackmann R. W., Christen R., Shapiro B. M. Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6066–6070. doi: 10.1073/pnas.78.10.6066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schackmann R. W., Eddy E. M., Shapiro B. M. The acrosome reaction of Strongylocentrotus purpuratus sperm. Ion requirements and movements. Dev Biol. 1978 Aug;65(2):483–495. doi: 10.1016/0012-1606(78)90043-x. [DOI] [PubMed] [Google Scholar]
  12. Tilney L. G., Bonder E. M., Coluccio L. M., Mooseker M. S. Actin from Thyone sperm assembles on only one end of an actin filament: a behavior regulated by profilin. J Cell Biol. 1983 Jul;97(1):112–124. doi: 10.1083/jcb.97.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tilney L. G., Inoué S. Acrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation. J Cell Biol. 1982 Jun;93(3):820–827. doi: 10.1083/jcb.93.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tilney L. G., Kallenbach N. Polymerization of actin. VI. The polarity of the actin filaments in the acrosomal process and how it might be determined. J Cell Biol. 1979 Jun;81(3):608–623. doi: 10.1083/jcb.81.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tilney L. G., Kiehart D. P., Sardet C., Tilney M. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J Cell Biol. 1978 May;77(2):536–550. doi: 10.1083/jcb.77.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES