Abstract
Friend erythroleukemia cells, grown in the presence of dimethyl sulfoxide for 3 d, synthesize unequal amounts of the two chains (alpha and beta) of spectrin with approximately 15-30% more beta than alpha spectrin. When cells were ruptured by nitrogen cavitation, nascent alpha and beta spectrin were found to be associated with a membranous cell fraction and were not detected in the soluble cytoplasmic cell fraction. Nascent membrane-bound spectrin appeared not to be protected by membranes, since it was susceptible to trypsin degradation in the absence of detergent. On fractionation of cells with 1% Triton X-100, more (1.75-fold) nascent spectrin was found in the Triton-soluble fraction than in the Triton-insoluble fraction (cytoskeleton). In the Triton-soluble fraction, there was 55% more nascent beta spectrin than alpha spectrin, while the cytoskeleton contained nearly equal amounts of alpha and beta spectrin. Cells were pulse-labeled with L- [35S]methionine for 2 min and chase incubated for varying periods of time from 15 to 90 min with nonradioactive L-methionine. Radioactive spectrin accumulated in the Triton-soluble fraction for the first 15 min of chase incubation and then dropped by 25% in the next hour. By contrast, the amount of radioactive spectrin in the Triton-insoluble fraction rose gradually for 1 h of the chase period. This indicates that, in Friend erythroleukemia cells, a pool of membrane-bound spectrin containing an excess of the beta polypeptide is used to form the cytoskeletal system which is composed of equal molar amounts of alpha and beta spectrin. The location of spectrin was determined by immunoelectron microscopy. Small amounts of spectrin were detected in cells not treated with dimethyl sulfoxide and in these cells it was located on the surface membrane and within the cytoplasm. On treatment with dimethyl sulfoxide, complex vacuolar structures containing viruses appeared in the cells. In cells treated with dimethyl sulfoxide for 3 d 30% of the spectrin was near the outer membrane and 25% was associated with vacuolar structures, whereas in cells treated for 5 and 7 d the majority of spectrin (57-61%) was located in the vacuolar areas.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
- Blikstad I., Lazarides E. Synthesis of spectrin in avian erythroid cells: association of nascent polypeptide chains with the cytoskeleton. Proc Natl Acad Sci U S A. 1983 May;80(9):2637–2641. doi: 10.1073/pnas.80.9.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blikstad I., Nelson W. J., Moon R. T., Lazarides E. Synthesis and assembly of spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of alpha and beta spectrin. Cell. 1983 Apr;32(4):1081–1091. doi: 10.1016/0092-8674(83)90292-1. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cervera M., Dreyfuss G., Penman S. Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell. 1981 Jan;23(1):113–120. doi: 10.1016/0092-8674(81)90276-2. [DOI] [PubMed] [Google Scholar]
- Davis J., Bennett V. Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem. 1983 Jun 25;258(12):7757–7766. [PubMed] [Google Scholar]
- Eisen H., Bach R., Emery R. Induction of spectrin in erythroleukemic cells transformed by Friend virus. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3898–3902. doi: 10.1073/pnas.74.9.3898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenney J., Glenney P. Co-expression of spectrin and fodrin in Friend erythroleukemic cells treated with DMSO. Exp Cell Res. 1984 May;152(1):15–21. doi: 10.1016/0014-4827(84)90225-8. [DOI] [PubMed] [Google Scholar]
- Goodman S. R., Zagon I. S., Whitfield C. F., Casoria L. A., Shohet S. B., Bernstein S. E., McLaughlin P. J., Laskiewicz T. L. A spectrin-like protein from mouse brain membranes: phosphorylation of the 235,000-dalton subunit. Am J Physiol. 1984 Jul;247(1 Pt 1):C61–C73. doi: 10.1152/ajpcell.1984.247.1.C61. [DOI] [PubMed] [Google Scholar]
- Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Moon R. T. Assembly and topogenesis of the spectrin-based membrane skeleton in erythroid development. Cell. 1984 Jun;37(2):354–356. doi: 10.1016/0092-8674(84)90364-7. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Nelson W. J. Expression of spectrin in nonerythroid cells. Cell. 1982 Dec;31(3 Pt 2):505–508. doi: 10.1016/0092-8674(82)90306-3. [DOI] [PubMed] [Google Scholar]
- Marchesi V. T. Spectrin: present status of a putative cyto-skeletal protein of the red cell membrane. J Membr Biol. 1979 Dec 14;51(2):101–131. doi: 10.1007/BF01869164. [DOI] [PubMed] [Google Scholar]
- Moon R. T., Lazarides E. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin. J Cell Biol. 1984 May;98(5):1899–1904. doi: 10.1083/jcb.98.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon R. T., Lazarides E. beta-Spectrin limits alpha-spectrin assembly on membranes following synthesis in a chicken erythroid cell lysate. Nature. 1983 Sep 1;305(5929):62–65. doi: 10.1038/305062a0. [DOI] [PubMed] [Google Scholar]
- Pfeffer S. R., Redman C. M. Biosynthesis of mouse erythrocyte membrane proteins by Friend erythroleukemia cells. Biochim Biophys Acta. 1981 Feb 20;641(1):254–263. doi: 10.1016/0005-2736(81)90589-7. [DOI] [PubMed] [Google Scholar]
- Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
- Rossi G. B., Aducci P., Gambari R., Minetti M., Vernole P. Presence of spectrin in untreated Friend erythroleukemic cells. Its accumulation upon treatment of the cells with dimethyl sulfoxide. J Cell Physiol. 1978 Dec;97(3 Pt 1):293–304. doi: 10.1002/jcp.1040970304. [DOI] [PubMed] [Google Scholar]
- Sato T., Friend C., De Harven E. Ultrastructural changes in Friend erythroleukemia cells treated with dimethyl sulfoxide. Cancer Res. 1971 Oct;31(10):1402–1417. [PubMed] [Google Scholar]
- Ungewickell E., Gratzer W. Self-association of human spectrin. A thermodynamic and kinetic study. Eur J Biochem. 1978 Aug 1;88(2):379–385. doi: 10.1111/j.1432-1033.1978.tb12459.x. [DOI] [PubMed] [Google Scholar]
