Abstract
The structural interaction of the epidermal growth factor (EGF) receptor and the cytoskeleton of A431 cells has been studied using a monoclonal anti-EGF receptor antibody. This has been done with immunogold labeling using a variety of electron microscopical preparation procedures and EGF binding studies. By providing an image of the membrane-associated cytoskeleton, the dry cleavage method reveals a preferential localization of EGF receptors superimposed upon cytoskeletal filaments. The colocalization of gold particles with cytoskeletal filaments is not affected when pre-labeled cells are extracted with the non-ionic detergent Triton X-100, as visualized by dry cleavage. Using surface replication, this treatment results in visualization of the cytoskeleton. In these latter preparations, it is also observed that EGF receptor-coupled gold particles remain associated with cytoskeletal elements. Moreover, Triton extraction performed before immunogold labeling of EGF receptors demonstrates that isolated cytoskeletons contained binding sites for anti-EGF receptor antibodies. Using stereo micrographs of replica's obtained from these isolated cytoskeletons, it is shown that gold-labeled EGF receptors are exclusively present on the cortical membrane-associated region of the cytoskeleton and not on more intracellular-located filaments. Scatchard analysis of EGF binding to cells fixed with glutaraldehyde and treated with Triton X-100 before and after EGF binding indicates that a high affinity EGF binding site is associated with the Triton X-100 insoluble cytoskeleton.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggeler J., Takemura R., Werb Z. High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages. J Cell Biol. 1983 Nov;97(5 Pt 1):1452–1458. doi: 10.1083/jcb.97.5.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ze'ev A. The cytoskeleton in cancer cells. Biochim Biophys Acta. 1985;780(3):197–212. doi: 10.1016/0304-419x(85)90003-4. [DOI] [PubMed] [Google Scholar]
- Boonstra J., Mummery C. L., van der Saag P. T., de Laat S. W. Two receptor classes for epidermal growth factor on pheochromocytoma cells, distinguishable by temperature, lectins, and tumor promoters. J Cell Physiol. 1985 Jun;123(3):347–352. doi: 10.1002/jcp.1041230309. [DOI] [PubMed] [Google Scholar]
- Boonstra J., van Belzen N., van Maurik P., Hage W. J., Blok F. J., Wiegant F. A., Verkleij A. J. Immunocytochemical demonstrations of cytoplasmic and cell-surface EGF receptors in A431 cells using cryo-ultramicrotomy, surface replication, freeze-etching and label fracture. J Microsc. 1985 Oct;140(Pt 1):119–129. doi: 10.1111/j.1365-2818.1985.tb02667.x. [DOI] [PubMed] [Google Scholar]
- Boonstra J., van Maurik P., Defize L. H., de Laat S. W., Leunissen J. L., Verkley A. J. Visualization of epidermal growth factor receptor in cryosections of cultured A431 cells by immuno-gold labeling. Eur J Cell Biol. 1985 Mar;36(2):209–216. [PubMed] [Google Scholar]
- Brown S., Levinson W., Spudich J. A. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supramol Struct. 1976;5(2):119–130. doi: 10.1002/jss.400050203. [DOI] [PubMed] [Google Scholar]
- Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
- Chinkers M., McKanna J. A., Cohen S. Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factors. J Cell Biol. 1979 Oct;83(1):260–265. doi: 10.1083/jcb.83.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chinkers M., McKanna J. A., Cohen S. Rapid rounding of human epidermoid carcinoma cells A-431 induced by epidermal growth factor. J Cell Biol. 1981 Feb;88(2):422–429. doi: 10.1083/jcb.88.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabricant R. N., De Larco J. E., Todaro G. J. Nerve growth factor receptors on human melanoma cells in culture. Proc Natl Acad Sci U S A. 1977 Feb;74(2):565–569. doi: 10.1073/pnas.74.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haigler H. T., McKanna J. A., Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol. 1979 May;81(2):382–395. doi: 10.1083/jcb.81.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Tilney L. G. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol. 1982 Oct;95(1):249–261. doi: 10.1083/jcb.95.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ip W., Danto S. I., Fischman D. A. Detection of desmin-containing intermediate filaments in cultured muscle and nonmuscle cells by immunoelectron microscopy. J Cell Biol. 1983 Feb;96(2):401–408. doi: 10.1083/jcb.96.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landreth G. E., Rieser G. D. Nerve growth factor- and epidermal growth factor-stimulated phosphorylation of a PC12 cytoskeletally associated protein in situ. J Cell Biol. 1985 Mar;100(3):677–683. doi: 10.1083/jcb.100.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landreth G. E., Williams L. K., Rieser G. D. Association of the epidermal growth factor receptor kinase with the detergent-insoluble cytoskeleton of A431 cells. J Cell Biol. 1985 Oct;101(4):1341–1350. doi: 10.1083/jcb.101.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mesland D. A., Los G., Spiele H. Cytochalasin B disrupts the association of filamentous web and plasma membrane in hepatocytes. Exp Cell Res. 1981 Oct;135(2):431–435. doi: 10.1016/0014-4827(81)90184-1. [DOI] [PubMed] [Google Scholar]
- Mesland D. A., Spiele H. Plasma membrane-associate filament systems in cultured cells visualized by dry-cleaving. J Cell Sci. 1983 Nov;64:351–364. doi: 10.1242/jcs.64.1.351. [DOI] [PubMed] [Google Scholar]
- Mesland D. A., Spiele H., Roos E. Membrane-associated cytoskeleton and coated vesicles in cultured hepatocytes visualized by dry-cleaving. Exp Cell Res. 1981 Mar;132(1):169–184. doi: 10.1016/0014-4827(81)90093-8. [DOI] [PubMed] [Google Scholar]
- Rees A. R., Gregoriou M., Johnson P., Garland P. B. High affinity epidermal growth factor receptors on the surface of A431 cells have restricted lateral diffusion. EMBO J. 1984 Aug;3(8):1843–1847. doi: 10.1002/j.1460-2075.1984.tb02057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robenek H., Hesz A. Dynamics of low-density lipoprotein receptors in the plasma membrane of cultured human skin fibroblasts as visualized by colloidal gold in conjunction with surface replicas. Eur J Cell Biol. 1983 Sep;31(2):275–282. [PubMed] [Google Scholar]
- Roos E., Spiele H., Feltkamp C. A., Huisman H., Wiegant F. A., Traas J., Mesland D. A. Localization of cell surface glycoproteins in membrane domains associated with the underlying filament network. J Cell Biol. 1985 Nov;101(5 Pt 1):1817–1825. doi: 10.1083/jcb.101.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schechter A. L., Bothwell M. A. Nerve growth factor receptors on PC12 cells: evidence for two receptor classes with differing cytoskeletal association. Cell. 1981 Jun;24(3):867–874. doi: 10.1016/0092-8674(81)90112-4. [DOI] [PubMed] [Google Scholar]
- Schlessinger J., Geiger B. Epidermal growth factor induces redistribution of actin and alpha-actinin in human epidermal carcinoma cells. Exp Cell Res. 1981 Aug;134(2):273–279. doi: 10.1016/0014-4827(81)90426-2. [DOI] [PubMed] [Google Scholar]
- Schlessinger J., Schreiber A. B., Levi A., Lax I., Libermann T., Yarden Y. Regulation of cell proliferation by epidermal growth factor. CRC Crit Rev Biochem. 1983;14(2):93–111. doi: 10.3109/10409238309102791. [DOI] [PubMed] [Google Scholar]
- Thyberg J. The microtubular cytoskeleton and the initiation of DNA synthesis. Exp Cell Res. 1984 Nov;155(1):1–8. doi: 10.1016/0014-4827(84)90761-4. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Ignatius M. J., Shooter E. M. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells. J Neurosci. 1985 Oct;5(10):2762–2770. doi: 10.1523/JNEUROSCI.05-10-02762.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Shooter E. M. Epidermal growth factor receptors on PC12 cells: alteration of binding properties by lectins. J Cell Biochem. 1983;22(2):99–109. doi: 10.1002/jcb.240220204. [DOI] [PubMed] [Google Scholar]
- Werth D. K., Pastan I. Vinculin phosphorylation in response to calcium and phorbol esters in intact cells. J Biol Chem. 1984 Apr 25;259(8):5264–5270. [PubMed] [Google Scholar]
- van Bergen en Henegouwen P. M., Jordi W. J., van Dongen G., Ramaekers F. C., Amesz H., Linnemans W. A. Studies on a possible relationship between alterations in the cytoskeleton and induction of heat shock protein synthesis in mammalian cells. Int J Hyperthermia. 1985 Jan-Mar;1(1):69–83. doi: 10.3109/02656738509029275. [DOI] [PubMed] [Google Scholar]