Abstract
Affinity-purified antibodies to the serum glycoprotein, vitronectin, were used to study sites of cell-substrate contact in cultures of rat myotubes and fibroblasts. Cells were removed from the substrate by treatment with saponin, leaving fragments of plasma membrane attached to the glass coverslip. When stained for vitronectin by indirect immunofluorescence, large areas of the substrate were brightly labeled. The focal contacts of fibroblasts and the broad adhesion plaques of myotubes appeared black, however, indicating that the antibodies had failed to react with those areas. Contact sites within the adhesion plaque remained unlabeled after saponin-treated samples were extracted with Triton X-100, or after intact cultures were sheared with a stream of fixative. These procedures expose extracellular macromolecules at the cell-substrate interface, which can then be labeled with concanavalin A. In contrast, when samples were sheared and then sonicated to remove all the cellular material from the coverslip, the entire substrate labeled extensively and almost uniformly with anti- vitronectin. Extracellular molecules associated with substrate contacts were also studied after freeze-fracture, using a technique we term "post-release fracture labeling." Platinum replicas of the external membrane were removed from the glass with hydrofluoric acid to expose the extracellular material. Anti-vitronectin, bound to the replicas and visualized by a second antibody conjugated to colloidal gold, labeled the broad areas of close myotube-substrate attachment and the nearby glass equally well. Our results are consistent with the hypothesis that vitronectin is present at all sites of cell-substrate contact, but that its antigenic sites are obscured by material deposited by both myotube and fibroblast cells.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avnur Z., Geiger B. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell. 1981 Jul;25(1):121–132. doi: 10.1016/0092-8674(81)90236-1. [DOI] [PubMed] [Google Scholar]
- Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol. 1981 Apr;89(1):141–145. doi: 10.1083/jcb.89.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes D. W., Silnutzer J. Isolation of human serum spreading factor. J Biol Chem. 1983 Oct 25;258(20):12548–12552. [PubMed] [Google Scholar]
- Barnes D. W., Silnutzer J., See C., Shaffer M. Characterization of human serum spreading factor with monoclonal antibody. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1362–1366. doi: 10.1073/pnas.80.5.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes D., Wolfe R., Serrero G., McClure D., Sato G. Effects of a serum spreading factor on growth and morphology of cells in serum-free medium. J Supramol Struct. 1980;14(1):47–63. doi: 10.1002/jss.400140106. [DOI] [PubMed] [Google Scholar]
- Bloch R. J. Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism. J Cell Biol. 1979 Sep;82(3):626–643. doi: 10.1083/jcb.82.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Geiger B. The localization of acetylcholine receptor clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell. 1980 Aug;21(1):25–35. doi: 10.1016/0092-8674(80)90111-7. [DOI] [PubMed] [Google Scholar]
- Bloch R. J. Isolation of acetylcholine receptor clusters in substrate-associated material from cultured rat myotubes using saponin. J Cell Biol. 1984 Sep;99(3):984–993. doi: 10.1083/jcb.99.3.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Chen W. T., Olden K., Bernard B. A., Chu F. F. Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J Cell Biol. 1984 Apr;98(4):1546–1555. doi: 10.1083/jcb.98.4.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W. T., Singer S. J. Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrata. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7318–7322. doi: 10.1073/pnas.77.12.7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
- Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath J. P., Dunn G. A. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J Cell Sci. 1978 Feb;29:197–212. doi: 10.1242/jcs.29.1.197. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Land B. R., Podleski T. R., Salpeter E. E., Salpeter M. M. Acetylcholine receptor distribution on myotubes in culture correlated to acetylcholine sensitivity. J Physiol. 1977 Jul;269(1):155–176. doi: 10.1113/jphysiol.1977.sp011897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pauli B., Weinstein R. S., Soble L. W., Alroy J. Freeze-fracture of monolayer cultures. J Cell Biol. 1977 Mar;72(3):763–769. doi: 10.1083/jcb.72.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Kan F. W. Label-fracture: a method for high resolution labeling of cell surfaces. J Cell Biol. 1984 Sep;99(3):1156–1161. doi: 10.1083/jcb.99.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pumplin D. W., Bloch R. J. Lipid domains of acetylcholine receptor clusters detected with saponin and filipin. J Cell Biol. 1983 Oct;97(4):1043–1054. doi: 10.1083/jcb.97.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rash J. E., Johnson T. J., Hudson C. S., Giddings F. D., Graham W. F., Eldefrawi M. E. Labelled-replica techniques: post-shadow labelling of intramembrane particles in freeze-fracture replicas. J Microsc. 1982 Nov;128(Pt 2):121–138. doi: 10.1111/j.1365-2818.1982.tb00444.x. [DOI] [PubMed] [Google Scholar]
- Ravdin P., Axelrod D. Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal Biochem. 1977 Jun;80(2):585–592. doi: 10.1016/0003-2697(77)90682-0. [DOI] [PubMed] [Google Scholar]
- Salpeter M. M., Spanton S., Holley K., Podleski T. R. Brain extract causes acetylcholine receptor redistribution which mimics some early events at developing neuromuscular junctions. J Cell Biol. 1982 May;93(2):417–425. doi: 10.1083/jcb.93.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whateley J. G., Knox P. Isolation of a serum component that stimulates the spreading of cells in culture. Biochem J. 1980 Feb 1;185(2):349–354. doi: 10.1042/bj1850349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yee A. G., Fischbach G. D., Karnovsky M. J. Clusters of intramembranous particles on cultured myotubes at sites that are highly sensitive to acetylcholine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):3004–3008. doi: 10.1073/pnas.75.6.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]