Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Aug 1;103(2):419–428. doi: 10.1083/jcb.103.2.419

Activation of coagulation releases endothelial cell mitogens

PMCID: PMC2113822  PMID: 3733873

Abstract

Recent studies have indicated that endothelial cell function includes elaboration of growth factors and regulation of coagulation. In this paper we demonstrate that activated coagulation Factor X (Factor Xa), a product of the coagulation mechanism generated before thrombin, induces enhanced release of endothelial cell mitogens, linking these two functions. Mitogenic activity generated by cultured bovine aortic endothelial cells in response to Factor Xa included platelet-derived growth-factor-like molecules based on a radioreceptor assay. Effective induction of mitogens by Factor Xa required the integrity of the enzyme's active center and the presence of the gamma-carboxyglutamic acid-containing domain of the molecule. Factor Xa-induced release of mitogens from endothelium occurred in serum-free medium and was not altered by hirudin or antibody to Factor V, indicating that it was a direct effect of Factor Xa and was not mediated by thrombin. Elaboration of mitogenic activity required only brief contact between Factor Xa and endothelium, and occurred in a time-dependent manner. Generation of enhanced mitogenic activity in response to Factor Xa was unaffected by the presence of actinomycin D and was not associated with increased hybridization of RNA from treated cells to a v-sis probe. Release of mitogenic activity was dependent on the dose of Factor Xa, being half-maximal at 0.5 nM and reaching a maximum by 5 nM. Radioligand binding studies demonstrated a class of endothelial cell sites half-maximally occupied at a Factor Xa concentration of 0.8 nM. The close correspondence between the parameters of Factor Xa-induced mitogen release and Factor Xa binding suggests these sites may be related. When Factor X was activated on the endothelial cell surface by Factors IXa and VIII, the Factor Xa formed resulted in the induction of enhanced release of mitogenic activity. These data suggest a mechanism by which the coagulation system can locally regulate endothelial cell function and vessel wall biology before thrombin-induced release of growth factors from platelets.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso D. R., Starek P. K., Minick C. R. Studies on the pathogenesis of atheroarteriosclerosis induced in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolemia. Am J Pathol. 1977 May;87(2):415–442. [PMC free article] [PubMed] [Google Scholar]
  2. Bajaj S. P., Mann K. G. Simultaneous purification of bovine prothrombin and factor X. Activation of prothrombin by trypsin-activated factor X. J Biol Chem. 1973 Nov 25;248(22):7729–7741. [PubMed] [Google Scholar]
  3. Bevilacqua M. P., Pober J. S., Majeau G. R., Cotran R. S., Gimbrone M. A., Jr Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med. 1984 Aug 1;160(2):618–623. doi: 10.1084/jem.160.2.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Björkerud S., Bondjers G. Arterial repair and atherosclerosis after mechanical injury. I. Permeability and light microscopic characteristics of endothelium in non-atherosclerotic and atherosclerotic lesions. Atherosclerosis. 1971 May-Jun;13(3):355–363. doi: 10.1016/0021-9150(71)90078-5. [DOI] [PubMed] [Google Scholar]
  5. Bowen-Pope D. F., Ross R. Platelet-derived growth factor. II. Specific binding to cultured cells. J Biol Chem. 1982 May 10;257(9):5161–5171. [PubMed] [Google Scholar]
  6. Bowen-Pope D. F., Vogel A., Ross R. Production of platelet-derived growth factor-like molecules and reduced expression of platelet-derived growth factor receptors accompany transformation by a wide spectrum of agents. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2396–2400. doi: 10.1073/pnas.81.8.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Breard J., Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol. 1980 Apr;124(4):1943–1948. [PubMed] [Google Scholar]
  8. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Colucci M., Balconi G., Lorenzet R., Pietra A., Locati D., Donati M. B., Semeraro N. Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest. 1983 Jun;71(6):1893–1896. doi: 10.1172/JCI110945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. David G. S., Reisfeld R. A. Protein iodination with solid state lactoperoxidase. Biochemistry. 1974 Feb 26;13(5):1014–1021. doi: 10.1021/bi00702a028. [DOI] [PubMed] [Google Scholar]
  12. Davie E. W., Fujikawa K. Basic mechanisms in blood coagulation. Annu Rev Biochem. 1975;44:799–829. doi: 10.1146/annurev.bi.44.070175.004055. [DOI] [PubMed] [Google Scholar]
  13. DiCorleto P. E., Bowen-Pope D. F. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1919–1923. doi: 10.1073/pnas.80.7.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DiCorleto P. E. Cultured endothelial cells produce multiple growth factors for connective tissue cells. Exp Cell Res. 1984 Jul;153(1):167–172. doi: 10.1016/0014-4827(84)90458-0. [DOI] [PubMed] [Google Scholar]
  15. DiCorleto P. E., Gajdusek C. M., Schwartz S. M., Ross R. Biochemical properties of the endothelium-derived growth factor: comparison to other growth factors. J Cell Physiol. 1983 Mar;114(3):339–345. doi: 10.1002/jcp.1041140313. [DOI] [PubMed] [Google Scholar]
  16. Dobner P. R., Kawasaki E. S., Yu L. Y., Bancroft F. C. Thyroid or glucocorticoid hormone induces pre-growth-hormone mRNA and its probable nuclear precursor in rat pituitary cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2230–2234. doi: 10.1073/pnas.78.4.2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Faggiotto A., Ross R., Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984 Jul-Aug;4(4):323–340. doi: 10.1161/01.atv.4.4.323. [DOI] [PubMed] [Google Scholar]
  18. Faggiotto A., Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984 Jul-Aug;4(4):341–356. doi: 10.1161/01.atv.4.4.341. [DOI] [PubMed] [Google Scholar]
  19. Fox P. L., DiCorleto P. E. Regulation of production of a platelet-derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol. 1984 Nov;121(2):298–308. doi: 10.1002/jcp.1041210206. [DOI] [PubMed] [Google Scholar]
  20. Fuchs H. E., Pizzo S. V. Regulation of factor Xa in vitro in human and mouse plasma and in vivo in mouse. Role of the endothelium and plasma proteinase inhibitors. J Clin Invest. 1983 Dec;72(6):2041–2049. doi: 10.1172/JCI111169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fujikawa K., Coan M. H., Legaz M. E., Davie E. W. The mechanism of activation of bovine factor X (Stuart factor) by intrinsic and extrinsic pathways. Biochemistry. 1974 Dec 17;13(26):5290–5299. doi: 10.1021/bi00723a006. [DOI] [PubMed] [Google Scholar]
  22. Fujikawa K., Legaz M. E., Davie E. W. Bovine factors X 1 and X 2 (Stuart factor). Isolation and characterization. Biochemistry. 1972 Dec 19;11(26):4882–4891. doi: 10.1021/bi00776a002. [DOI] [PubMed] [Google Scholar]
  23. Fujikawa K., Thompson A. R., Legaz M. E., Meyer R. G., Davie E. W. Isolation and characterization of bovine factor IX (Christmas factor). Biochemistry. 1973 Nov 20;12(24):4938–4945. doi: 10.1021/bi00748a019. [DOI] [PubMed] [Google Scholar]
  24. Gajdusek C. M. Release of endothelial cell-derived growth factor (ECDGF) by heparin. J Cell Physiol. 1984 Oct;121(1):13–21. doi: 10.1002/jcp.1041210104. [DOI] [PubMed] [Google Scholar]
  25. Gajdusek C. M., Schwartz S. M. Comparison of intracellular and extracellular mitogenic activity. J Cell Physiol. 1984 Nov;121(2):316–322. doi: 10.1002/jcp.1041210208. [DOI] [PubMed] [Google Scholar]
  26. Gajdusek C. M., Schwartz S. M. Technique for cloning bovine aortic endothelial cells. In Vitro. 1983 May;19(5):394–402. doi: 10.1007/BF02619556. [DOI] [PubMed] [Google Scholar]
  27. Gajdusek C., DiCorleto P., Ross R., Schwartz S. M. An endothelial cell-derived growth factor. J Cell Biol. 1980 May;85(2):467–472. doi: 10.1083/jcb.85.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Harker L. A., Slichter S. J., Scott C. R., Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974 Sep 12;291(11):537–543. doi: 10.1056/NEJM197409122911101. [DOI] [PubMed] [Google Scholar]
  30. Kisiel W., Hermodson M. A., Davie E. W. Factor X activating enzyme from Russell's viper venom: isolation and characterization. Biochemistry. 1976 Nov 2;15(22):4901–4906. doi: 10.1021/bi00667a023. [DOI] [PubMed] [Google Scholar]
  31. Klotz I. M., Hunston D. L. Properties of graphical representations of multiple classes of binding sites. Biochemistry. 1971 Aug 3;10(16):3065–3069. doi: 10.1021/bi00792a013. [DOI] [PubMed] [Google Scholar]
  32. Kurachi K., Fujikawa K., Schmer G., Davie E. W. Inhibition of bovine factor IXa and factor Xabeta by antithrombin III. Biochemistry. 1976 Jan 27;15(2):373–377. doi: 10.1021/bi00647a021. [DOI] [PubMed] [Google Scholar]
  33. Laura R., Robison D. J., Bing D. H. (p-Amidinophenyl)methanesulfonyl fluoride, an irreversible inhibitor of serine proteases. Biochemistry. 1980 Oct 14;19(21):4859–4864. doi: 10.1021/bi00562a024. [DOI] [PubMed] [Google Scholar]
  34. Lewis J. C., Kottke B. A. Endothelial damage and thrombocyte adhesion in pigeon atherosclerosis. Science. 1977 May 27;196(4293):1007–1009. doi: 10.1126/science.860128. [DOI] [PubMed] [Google Scholar]
  35. Lollar P., Hoak J. C., Owen W. G. Binding of thrombin to cultured human endothelial cells. Nonequilibrium aspects. J Biol Chem. 1980 Nov 10;255(21):10279–10283. [PubMed] [Google Scholar]
  36. Lundblad R. L., Uhteg L. C., Vogel C. N., Kingdon H. S., Mann K. G. Preparation and partial characterization of two forms of bovine thrombin. Biochem Biophys Res Commun. 1975 Sep 16;66(2):482–489. doi: 10.1016/0006-291x(75)90536-7. [DOI] [PubMed] [Google Scholar]
  37. Lyberg T., Galdal K. S., Evensen S. A., Prydz H. Cellular cooperation in endothelial cell thromboplastin synthesis. Br J Haematol. 1983 Jan;53(1):85–95. doi: 10.1111/j.1365-2141.1983.tb01989.x. [DOI] [PubMed] [Google Scholar]
  38. Mahoney W. C., Kurachi K., Hermodson M. A. Formation and dissociation of the covalent complexes between trypsin and two homologous inhibitors, alpha 1-antitrypsin and antithrombin III. Eur J Biochem. 1980 Apr;105(3):545–552. doi: 10.1111/j.1432-1033.1980.tb04531.x. [DOI] [PubMed] [Google Scholar]
  39. Mann K. G. Prothrombin. Methods Enzymol. 1976;45:123–156. doi: 10.1016/s0076-6879(76)45016-4. [DOI] [PubMed] [Google Scholar]
  40. Moore S. Thromboatherosclerosis in normolipemic rabbits. A result of continued endothelial damage. Lab Invest. 1973 Nov;29(5):478–487. [PubMed] [Google Scholar]
  41. Nawroth P. P., McCarthy D., Kisiel W., Handley D., Stern D. M. Cellular processing of bovine factors X and Xa by cultured bovine aortic endothelial cells. J Exp Med. 1985 Aug 1;162(2):559–572. doi: 10.1084/jem.162.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nawroth P. P., Stern D. M. A pathway of coagulation on endothelial cells. J Cell Biochem. 1985;28(4):253–264. doi: 10.1002/jcb.240280403. [DOI] [PubMed] [Google Scholar]
  43. Nelsestuen G. L., Kisiel W., Di Scipio R. G. Interaction of vitamin K dependent proteins with membranes. Biochemistry. 1978 May 30;17(11):2134–2138. doi: 10.1021/bi00604a017. [DOI] [PubMed] [Google Scholar]
  44. Nemerson Y., Bach R. Tissue factor revisited. Prog Hemost Thromb. 1982;6:237–261. [PubMed] [Google Scholar]
  45. Pearson T. A., Dillman J., Solez K., Heptinstall R. H. Monoclonal characteristics of organising arterial thrombi: Significance in the origin and growth of human atherosclerotic plaques. Lancet. 1979 Jan 6;1(8106):7–11. doi: 10.1016/s0140-6736(79)90453-7. [DOI] [PubMed] [Google Scholar]
  46. Raines E. W., Ross R. Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. J Biol Chem. 1982 May 10;257(9):5154–5160. [PubMed] [Google Scholar]
  47. Reidy M. A., Schwartz S. M. Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab Invest. 1981 Apr;44(4):301–308. [PubMed] [Google Scholar]
  48. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  49. Robbins K. C., Leal F., Pierce J. H., Aaronson S. A. The v-sis/PDGF-2 transforming gene product localizes to cell membranes but is not a secretory protein. EMBO J. 1985 Jul;4(7):1783–1792. doi: 10.1002/j.1460-2075.1985.tb03851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rodgers G. M., Shuman M. A. Prothrombin is activated on vascular endothelial cells by factor Xa and calcium. Proc Natl Acad Sci U S A. 1983 Nov;80(22):7001–7005. doi: 10.1073/pnas.80.22.7001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rosenberg R. D., Rosenberg J. S. Natural anticoagulant mechanisms. J Clin Invest. 1984 Jul;74(1):1–6. doi: 10.1172/JCI111389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schwartz S. M., Gajdusek C. M. Growth factors and the vessel wall. Prog Hemost Thromb. 1982;6:85–112. [PubMed] [Google Scholar]
  53. Schwartz S. M., Gajdusek C. M., Selden S. C., 3rd Vascular wall growth control: the role of the endothelium. Arteriosclerosis. 1981 Mar-Apr;1(2):107–126. doi: 10.1161/01.atv.1.2.107. [DOI] [PubMed] [Google Scholar]
  54. Schwartz S. M. Selection and characterization of bovine aortic endothelial cells. In Vitro. 1978 Dec;14(12):966–980. doi: 10.1007/BF02616210. [DOI] [PubMed] [Google Scholar]
  55. Scott R. W., Bergman B. L., Bajpai A., Hersh R. T., Rodriguez H., Jones B. N., Barreda C., Watts S., Baker J. B. Protease nexin. Properties and a modified purification procedure. J Biol Chem. 1985 Jun 10;260(11):7029–7034. [PubMed] [Google Scholar]
  56. Skogen W. F., Esmon C. T., Cox A. C. Comparison of coagulation factor Xa and des-(1-44)factor Xa in the assembly of prothrombinase. J Biol Chem. 1984 Feb 25;259(4):2306–2310. [PubMed] [Google Scholar]
  57. Smith E. B., Alexander K. M., Massie I. B. Insoluble "fibrin" in human aortic intima. Quantitative studies on the relationship between insoluble "fibrin", soluble fibrinogen and low density lipoprotein. Atherosclerosis. 1976 Jan-Feb;23(1):19–39. doi: 10.1016/0021-9150(76)90116-7. [DOI] [PubMed] [Google Scholar]
  58. Smith E. B., Staples E. M., Dietz H. S., Smith R. H. Role of endothelium in sequestration of lipoprotein and firbrinogen in aortic lesions, thrombi, and graft pseudo-intimas. Lancet. 1979 Oct 20;2(8147):812–816. doi: 10.1016/s0140-6736(79)92173-1. [DOI] [PubMed] [Google Scholar]
  59. Stern D. M., Drillings M., Kisiel W., Nawroth P., Nossel H. L., LaGamma K. S. Activation of factor IX bound to cultured bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1984 Feb;81(3):913–917. doi: 10.1073/pnas.81.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Stern D. M., Nawroth P. P., Kisiel W., Handley D., Drillings M., Bartos J. A coagulation pathway on bovine aortic segments leading to generation of Factor Xa and thrombin. J Clin Invest. 1984 Dec;74(6):1910–1921. doi: 10.1172/JCI111611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stern D. M., Nawroth P. P., Kisiel W., Vehar G., Esmon C. T. The binding of factor IXa to cultured bovine aortic endothelial cells. Induction of a specific site in the presence of factors VIII and X. J Biol Chem. 1985 Jun 10;260(11):6717–6722. [PubMed] [Google Scholar]
  62. Stern D., Nawroth P., Handley D., Kisiel W. An endothelial cell-dependent pathway of coagulation. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2523–2527. doi: 10.1073/pnas.82.8.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tollefsen D. M., Feagler J. R., Majerus P. W. The binding of thrombin to the surface of human platelets. J Biol Chem. 1974 Apr 25;249(8):2646–2651. [PubMed] [Google Scholar]
  64. Vehar G. A., Davie E. W. Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry. 1980 Feb 5;19(3):401–410. doi: 10.1021/bi00544a001. [DOI] [PubMed] [Google Scholar]
  65. Vogel A., Raines E., Kariya B., Rivest M. J., Ross R. Coordinate control of 3T3 cell proliferation by platelet-derived growth factor and plasma components. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2810–2814. doi: 10.1073/pnas.75.6.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wang C. H., Largis E. E., Schaffer S. A. The effects of endothelial cell-conditioned media on the proliferation of aortic smooth muscle cells and 3T3 cells in culture. Artery. 1981;9(5):358–371. [PubMed] [Google Scholar]
  67. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
  68. Witte L. D., Cornicelli J. A., Miller R. W., Goodman D. S. Effect of platelet-derived and endothelial cell-derived growth factors on the low density lipoprotein receptor pathway in cultured human fibroblasts. J Biol Chem. 1982 May 25;257(10):5392–5401. [PubMed] [Google Scholar]
  69. Witte L. D., Kaplan K. L., Nossel H. L., Lages B. A., Weiss H. J., Goodman D. S. Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells. Circ Res. 1978 Mar;42(3):402–409. doi: 10.1161/01.res.42.3.402. [DOI] [PubMed] [Google Scholar]
  70. Woolf N. Thrombosis and atherosclerosis. Br Med Bull. 1978 May;34(2):137–142. doi: 10.1093/oxfordjournals.bmb.a071483. [DOI] [PubMed] [Google Scholar]
  71. van Dieijen G., Tans G., Rosing J., Hemker H. C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem. 1981 Apr 10;256(7):3433–3442. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES