Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Aug 1;103(2):593–604. doi: 10.1083/jcb.103.2.593

Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro

PMCID: PMC2113827  PMID: 3733882

Abstract

We have developed a simple procedure for isolating mitotic spindles from the diatom Stephanopyxis turris and have shown that they undergo anaphase spindle elongation in vitro upon addition of ATP. The isolated central spindle is a barrel-shaped structure with a prominent zone of microtubule overlap. After ATP addition greater than 75% of the spindle population undergoes distinct structural rearrangements: the spindles on average are longer and the two half-spindles are separated by a distinct gap traversed by only a small number of microtubules, the phase-dense material in the overlap zone is gone, and the peripheral microtubule arrays have depolymerized. At the ultrastructural level, we examined serial cross-sections of spindles after 1-, 5-, and 10-min incubations in reactivation medium. Microtubule depolymerization distal to the poles is confirmed by the increased number of incomplete, i.e., c-microtubule profiles specifically located in the region of overlap. After 10 min we see areas of reduced microtubule number which correspond to the gaps seen in the light microscope and an overall reduction in the number of half-spindle microtubules to about one-third the original number. The changes in spindle structure are highly specific for ATP, are dose-dependent, and do not occur with nonhydrolyzable nucleotide analogues. Spindle elongation and gap formation are blocked by 10 microM vanadate, equimolar mixtures of ATP and AMPPNP, and by sulfhydryl reagents. This process is not affected by nocodazole, erythro-9-[3-(2-hydroxynonyl)]adenine, cytochalasin D, and phalloidin. In the presence of taxol, the extent of spindle elongation is increased; however, distinct gaps still form between the two half- spindles. These results show that the response of isolated spindles to ATP is a complex process consisting of several discrete steps including initiation events, spindle elongation mechanochemistry, controlled central spindle microtubule plus-end depolymerization, and loss of peripheral microtubules. They also show that the microtubule overlap zone is an important site of ATP action and suggest that spindle elongation in vitro is best explained by a mechanism of microtubule- microtubule sliding. Spindle elongation in vitro cannot be accounted for by cytoplasmic forces pulling on the poles or by microtubule polymerization.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai D. J., Brokaw C. J., Thompson W. C., Wilson L. Two different monoclonal antibodies to alpha-tubulin inhibit the bending of reactivated sea urchin spermatozoa. Cell Motil. 1982;2(6):599–614. doi: 10.1002/cm.970020608. [DOI] [PubMed] [Google Scholar]
  2. Bershadsky A. D., Gelfand V. I. ATP-dependent regulation of cytoplasmic microtubule disassembly. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3610–3613. doi: 10.1073/pnas.78.6.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bershadsky A. D., Gelfand V. I. Role of ATP in the regulation of stability of cytoskeletal structures. Cell Biol Int Rep. 1983 Mar;7(3):173–187. doi: 10.1016/0309-1651(83)90218-7. [DOI] [PubMed] [Google Scholar]
  4. Bouchard P., Penningroth S. M., Cheung A., Gagnon C., Bardin C. W. erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1033–1036. doi: 10.1073/pnas.78.2.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cande W. Z. Inhibition of spindle elongation in permeabilized mitotic cells by erythro-9-[3-(2-hydroxynonyl)] adenine. Nature. 1982 Feb 25;295(5851):700–701. doi: 10.1038/295700a0. [DOI] [PubMed] [Google Scholar]
  6. Cande W. Z., McDonald K. L. In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature. 1985 Jul 11;316(6024):168–170. doi: 10.1038/316168a0. [DOI] [PubMed] [Google Scholar]
  7. Cande W. Z., McDonald K., Meeusen R. L. A permeabilized cell model for studying cell division: a comparison of anaphase chromosome movement and cleavage furrow constriction in lysed PtK1 cells. J Cell Biol. 1981 Mar;88(3):618–629. doi: 10.1083/jcb.88.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
  9. Cande W. Z., Wolniak S. M. Chromosome movement in lysed mitotic cells is inhibited by vanadate. J Cell Biol. 1978 Nov;79(2 Pt 1):573–580. doi: 10.1083/jcb.79.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Microtubule stability and assembly in living cells: the influence of metabolic inhibitors, taxol and pH. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):227–240. doi: 10.1101/sqb.1982.046.01.026. [DOI] [PubMed] [Google Scholar]
  11. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goode D., Roth L. E. The mitotic apparatus of a giant ameba: solubility properties and induction of elongation. Exp Cell Res. 1969 Dec;58(2):343–352. doi: 10.1016/0014-4827(69)90515-1. [DOI] [PubMed] [Google Scholar]
  14. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  15. Jameson L., Caplow M. Modification of microtubule steady-state dynamics by phosphorylation of the microtubule-associated proteins. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3413–3417. doi: 10.1073/pnas.78.6.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jameson L., Frey T., Zeeberg B., Dalldorf F., Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 1980 May 27;19(11):2472–2479. doi: 10.1021/bi00552a027. [DOI] [PubMed] [Google Scholar]
  17. Leslie R. J., Pickett-Heaps J. D. Spindle microtubule dynamics following ultraviolet-microbeam irradiations of mitotic diatoms. Cell. 1984 Mar;36(3):717–727. doi: 10.1016/0092-8674(84)90352-0. [DOI] [PubMed] [Google Scholar]
  18. Leslie R. J., Pickett-Heaps J. D. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol. 1983 Feb;96(2):548–561. doi: 10.1083/jcb.96.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Margolis R. L., Rauch C. T. Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein. Biochemistry. 1981 Jul 21;20(15):4451–4458. doi: 10.1021/bi00518a033. [DOI] [PubMed] [Google Scholar]
  20. Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
  21. McDonald K. L., Edwards M. K., McIntosh J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J Cell Biol. 1979 Nov;83(2 Pt 1):443–461. doi: 10.1083/jcb.83.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McDonald K., Pickett-Heaps J. D., McIntosh J. R., Tippit D. H. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J Cell Biol. 1977 Aug;74(2):377–388. doi: 10.1083/jcb.74.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore M. J. Removal of glass coverslips from cultures flat embedded in epoxy resins using hydrofluoric acid. J Microsc. 1975 Jul;104(2):205–207. doi: 10.1111/j.1365-2818.1975.tb04018.x. [DOI] [PubMed] [Google Scholar]
  24. Morejohn L. C., Fosket D. E. Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine. J Cell Biol. 1984 Jul;99(1 Pt 1):141–147. doi: 10.1083/jcb.99.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murthy A. S., Flavin M. Microtubule assembly using the microtubule-associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur J Biochem. 1983 Dec 1;137(1-2):37–46. doi: 10.1111/j.1432-1033.1983.tb07792.x. [DOI] [PubMed] [Google Scholar]
  26. Nicklas R. B., Kubai D. F. Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma. 1985;92(4):313–324. doi: 10.1007/BF00329815. [DOI] [PubMed] [Google Scholar]
  27. Oppenheim D. S., Hauschaka B. T., McIntosh J. R. Anaphase motions in dilute colchicine. Evidence of two phases in chromosome segregation. Exp Cell Res. 1973 Apr;79(1):95–105. [PubMed] [Google Scholar]
  28. Penningroth S. M., Cheung A., Olehnik K., Koslosky R. Mechanochemical coupling in the relaxation of rigor-wave sea urchin sperm flagella. J Cell Biol. 1982 Mar;92(3):733–741. doi: 10.1083/jcb.92.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pickett-Heaps J. D., Tippit D. H., Leslie R. Light and electron microscopic observations on cell division in two large pennate diatoms, Hantzschia and Nitzschia. I. Mitosis in vivo. Eur J Cell Biol. 1980 Apr;21(1):1–11. [PubMed] [Google Scholar]
  30. Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
  31. Pickett-Heaps J. D., Tippit D. H. The diatom spindle in perspective. Cell. 1978 Jul;14(3):455–467. doi: 10.1016/0092-8674(78)90232-5. [DOI] [PubMed] [Google Scholar]
  32. Pickett-Heaps J., Spurck T., Tippit D. Chromosome motion and the spindle matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):137s–143s. doi: 10.1083/jcb.99.1.137s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  34. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. RIS H. The anaphase movement of chromosomes in the spermatocytes of the grasshopper. Biol Bull. 1949 Feb;96(1):90–106. [PubMed] [Google Scholar]
  36. Sakai H. The isolated mitotic apparatus and chromosome motion. Int Rev Cytol. 1978;55:22–48. [PubMed] [Google Scholar]
  37. Schliwa M., Ezzell R. M., Euteneuer U. erythro-9-[3-(2-Hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6044–6048. doi: 10.1073/pnas.81.19.6044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Soranno T., Pickett-Heaps J. Directionally controlled spindle disassembly after mitosis in the diatom Pinnularia. Eur J Cell Biol. 1982 Feb;26(2):234–243. [PubMed] [Google Scholar]
  39. Telzer B. R., Haimo L. T. Decoration of spindle microtubules with Dynein: evidence for uniform polarity. J Cell Biol. 1981 May;89(2):373–378. doi: 10.1083/jcb.89.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tippit D. H., Fields C. T., O'Donnell K. L., Pickett-Heaps J. D., McLaughlin D. J. The organization of microtubules during anaphase and telophase spindle elongation in the rust fungus Puccinia. Eur J Cell Biol. 1984 May;34(1):34–44. [PubMed] [Google Scholar]
  41. Tippit D. H., Pickett-Heaps J. D., Leslie R. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol. 1980 Aug;86(2):402–416. doi: 10.1083/jcb.86.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
  44. Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP 2). Proc Natl Acad Sci U S A. 1980 Jun;77(6):3206–3210. doi: 10.1073/pnas.77.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vandre D. D., Davis F. M., Rao P. N., Borisy G. G. Phosphoproteins are components of mitotic microtubule organizing centers. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4439–4443. doi: 10.1073/pnas.81.14.4439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wordeman L., McDonald K. L., Cande W. Z. The distribution of cytoplasmic microtubules throughout the cell cycle of the centric diatom Stephanopyxis turris: their role in nuclear migration and positioning the mitotic spindle during cytokinesis. J Cell Biol. 1986 May;102(5):1688–1698. doi: 10.1083/jcb.102.5.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zabrecky J. R., Cole R. D. Effect of ATP on the kinetics of microtubule assembly. J Biol Chem. 1982 Apr 25;257(8):4633–4638. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES