Abstract
We have developed microdensitometer-computer correlation techniques to analyze the arrangement of microtubule arms and bridges (i.e., microtubule-associated proteins [MAPs]). A microdensitometer was used to scan immediately adjacent to the wall of longitudinally sectioned microtubules in positive transparency electron micrographs. Signal enhancement procedures were applied to the digitized densitometer output to produce a binary sequence representing the apparent axial spacing of MAP projections. These enhanced records were analyzed in two ways. (a) Autocorrelograms were formed for each record and correlogram peaks from a group of scans were pooled to construct a peak frequency histogram. (b) Cross-correlation was used to optimize the match between each enhanced record and templates predicted by different models of MAP organization. Seven symmetrical superlattices were considered as well as single axial repeats. The analyses were repeated with randomly generated records to establish confidence levels. Using the above methods, we analyzed the intrarow bridges of the Saccinobaculus axostyle and the MAP2 projections associated with brain microtubules synthesized in vitro. We confirmed a strict 16-nm axial repeat for axostyle bridges. For 26 MAP2 records, the only significant match was to a 12-dimer superlattice model (P less than 0.002). However, we also found some axial distances between MAP2 projections which were compatible with the additional spacings predicted by a 6-dimer superlattice. Therefore, we propose that MAP2 projections are arranged in a "saturated 12-dimer, unsaturated 6-dimer" superlattice, which may be characteristic of a wide variety of MAPs.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binder L. I., Rosenbaum J. L. The in vitro assembly of flagellar outer doublet tubulin. J Cell Biol. 1978 Nov;79(2 Pt 1):500–515. doi: 10.1083/jcb.79.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns R. G., Islam K. Stoichiometry of microtubule-associated protein (MAP2):tubulin and the localisation of the phosphorylation and cysteine residues along the MAP2 primary sequence. Eur J Biochem. 1984 Jun 15;141(3):599–608. doi: 10.1111/j.1432-1033.1984.tb08235.x. [DOI] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. Assembly of microtubule protein: role of guanosine di- and triphosphate nucleotides. Biochemistry. 1982 Mar 16;21(6):1215–1224. doi: 10.1021/bi00535a017. [DOI] [PubMed] [Google Scholar]
- Cohen W. D., Bartelt D., Jaeger R., Langford G., Nemhauser I. The cytoskeletal system of nucleated erythrocytes. I. Composition and function of major elements. J Cell Biol. 1982 Jun;93(3):828–828. doi: 10.1083/jcb.93.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuge H., Bastmeyer M., Steffen W. A model for chromosome movement based on lateral interaction of spindle microtubules. J Theor Biol. 1985 Aug 7;115(3):391–399. doi: 10.1016/s0022-5193(85)80199-5. [DOI] [PubMed] [Google Scholar]
- Gottlieb R. A., Murphy D. B. The pattern of MAP-2 binding on microtubules: visual enhancement of MAP attachment sites by antibody labeling and electron microscopy. J Ultrastruct Res. 1983 Nov;85(2):175–185. doi: 10.1016/s0022-5320(83)90105-3. [DOI] [PubMed] [Google Scholar]
- Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol. 1982 Jul;94(1):129–142. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Ritter H., Jr Dynamics of mitotic spindle organization and function. Soc Gen Physiol Ser. 1975;30:3–30. [PubMed] [Google Scholar]
- Jensen C. G. Dynamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm. J Cell Biol. 1982 Feb;92(2):540–558. doi: 10.1083/jcb.92.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen C. G., Smaill B. H. A technique for analyzing the spatial organization of microtubular arms and bridges (MAPs). Ann N Y Acad Sci. 1986;466:417–419. doi: 10.1111/j.1749-6632.1986.tb38411.x. [DOI] [PubMed] [Google Scholar]
- Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langford G. M. Arrangement of subunits in microtubules with 14 profilaments. J Cell Biol. 1980 Nov;87(2 Pt 1):521–526. doi: 10.1083/jcb.87.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McEwen B., Edelstein S. J. Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol. 1980 May 15;139(2):123–145. doi: 10.1016/0022-2836(80)90300-9. [DOI] [PubMed] [Google Scholar]
- McIntosh J. R. Bridges between microtubules. J Cell Biol. 1974 Apr;61(1):166–187. doi: 10.1083/jcb.61.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh J. R., Ogata E. S., Landis S. C. The axostyle of Saccinobaculus. I. Structure of the organism and its microtubule bundle. J Cell Biol. 1973 Feb;56(2):304–323. doi: 10.1083/jcb.56.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson G. E., Linck R. W. Observations of the structural components of flagellar axonemes and central pair microtubules from rat sperm. J Ultrastruct Res. 1977 Oct;61(1):21–43. doi: 10.1016/s0022-5320(77)90004-1. [DOI] [PubMed] [Google Scholar]
- Pierson G. B., Burton P. R., Himes R. H. Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol. 1978 Jan;76(1):223–228. doi: 10.1083/jcb.76.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Selden S. C., Maupin P. Interaction of actin filaments with microtubules. J Cell Biol. 1984 Jul;99(1 Pt 2):33s–37s. doi: 10.1083/jcb.99.1.33s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaven E., Jensen C. G., Spicher M., Azhar S. Unique microtubules in luteal cells from superovulated rats. J Ultrastruct Res. 1983 Jun;83(3):284–295. doi: 10.1016/s0022-5320(83)90135-1. [DOI] [PubMed] [Google Scholar]
- Sherline P., Lee Y. C., Jacobs L. S. Binding of microtubules to pituitary secretory granules and secretory granule membranes. J Cell Biol. 1977 Feb;72(2):380–389. doi: 10.1083/jcb.72.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheterline P. Localisation of the major high-molecular-weight protein on microtubules in vitro and in cultured cells. Exp Cell Res. 1978 Sep;115(2):460–464. doi: 10.1016/0014-4827(78)90310-5. [DOI] [PubMed] [Google Scholar]
- Sloboda R. D., Dickersin K. Structure and composition of the cytoskeleton of nucleated erythrocytes I. The presence of microtubule-associated protein 2 in the marginal band. J Cell Biol. 1980 Oct;87(1):170–179. doi: 10.1083/jcb.87.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suprenant K. A., Dentler W. L. Association between endocrine pancreatic secretory granules and in-vitro-assembled microtubules is dependent upon microtubule-associated proteins. J Cell Biol. 1982 Apr;93(1):164–174. doi: 10.1083/jcb.93.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travis J. L., Allen R. D. Studies on the motility of the foraminifera. I. Ultrastructure of the reticulopodial network of Allogromia laticollaris (Arnold). J Cell Biol. 1981 Jul;90(1):211–221. doi: 10.1083/jcb.90.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee R. B., Bloom G. S., Theurkauf W. E. Microtubule-associated proteins: subunits of the cytomatrix. J Cell Biol. 1984 Jul;99(1 Pt 2):38s–44s. doi: 10.1083/jcb.99.1.38s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP 2). Proc Natl Acad Sci U S A. 1980 Jun;77(6):3206–3210. doi: 10.1073/pnas.77.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voter W. A., Erickson H. P. Electron microscopy of MAP 2 (microtubule-associated protein 2). J Ultrastruct Res. 1982 Sep;80(3):374–382. doi: 10.1016/s0022-5320(82)80051-8. [DOI] [PubMed] [Google Scholar]
- Woodrum D. T., Linck R. W. Structural basis of motility in the microtubular axostyle: implications for cytoplasmic microtubule structure and function. J Cell Biol. 1980 Nov;87(2 Pt 1):404–414. doi: 10.1083/jcb.87.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woody R. W., Roberts G. C., Clark D. C., Bayley P. M. 1H NMR evidence for flexibility in microtubule-associated proteins and microtubule protein oligomers. FEBS Lett. 1982 May 17;141(2):181–184. doi: 10.1016/0014-5793(82)80042-2. [DOI] [PubMed] [Google Scholar]
- Zingsheim H. P., Herzog W., Weber K. Differences in surface morphology of microtubules reconstituted from pure brain tubulin using two different microtubule-associated proteins: the high molecular weight MAP 2 proteins and tau proteins. Eur J Cell Biol. 1979 Jun;19(2):175–183. [PubMed] [Google Scholar]