Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1767–1776. doi: 10.1083/jcb.100.5.1767

Electron microscopic characterization of chick embryonic skeletal muscle proteoglycans

PMCID: PMC2113846  PMID: 2985627

Abstract

In this article, proteoglycans from embryonic chick leg muscle are quantitatively and qualitatively compared with day 8 high density cell culture cartilage proteoglycans by electron microscopy of proteoglycan- cytochrome c monolayers. The visualized proteoglycan profiles were separated into four categories according to shape, size, and complexity. The two major categories were further characterized by lengths of core proteins, lengths of side projections, and distance between side projections. Two large proteoglycans are identifiable in spread leg muscle preparations. One group has a core protein (mean length of 205 nm) from which extend long thin side projections that we interpret to be groups of chondroitin sulfate glycosaminoglycans with a mean length of 79 nm. This large chondroitin sulfate proteoglycan is the only type found in muscle cultures as determined both biochemically in the past and now by electron microscopy and is referred to as muscle proteoglycan. The second large proteoglycan has a mean core protein length of 250 nm and side projections that are visibly shorter (mean length of 38 nm) and thicker than those of the muscle proteoglycan. This group is referred to as the mesenchymal proteoglycan since its biosynthetic origin is still uncertain. We compare these two profiles with the chick cartilage chondroitin sulfate proteoglycan that has a mean core protein length of 202 nm and side projections with a mean length of 50 nm. The data presented here substantiate the earlier biochemical characterization of these noncartilage proteoglycans and establish the unique structural features of the muscle proteoglycan as compared with the similar profiles of the cartilage and mesenchymal proteoglycans.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrens P. B., Solursh M., Meier S. The synthesis and localization of glycosaminoglycans in striated muscle differentiating in cell culture. J Exp Zool. 1977 Dec;202(3):375–388. doi: 10.1002/jez.1402020308. [DOI] [PubMed] [Google Scholar]
  2. Axelsson I., Berman I., Pita J. C. Proteoglycans from rabbit articular and growth plate cartilage. Ultracentrifugation, gel chromatography, and electron microscopy. J Biol Chem. 1983 Jul 25;258(14):8915–8921. [PubMed] [Google Scholar]
  3. Buckwalter J. A., Rosenberg L. C. Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem. 1982 Aug 25;257(16):9830–9839. [PubMed] [Google Scholar]
  4. Buckwalter J. A., Rosenberg L. C., Tang L. H. The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage. J Biol Chem. 1984 May 10;259(9):5361–5363. [PubMed] [Google Scholar]
  5. Buckwalter J. A., Rosenberg L. Structural changes during development in bovine fetal epiphyseal cartilage. Coll Relat Res. 1983 Nov;3(6):489–504. doi: 10.1016/s0174-173x(83)80028-4. [DOI] [PubMed] [Google Scholar]
  6. Buckwalter J. A. The structure of human chondrosarcoma proteoglycans. J Bone Joint Surg Am. 1983 Sep;65(7):958–974. [PubMed] [Google Scholar]
  7. Caplan A. I. A simplified procedure for preparing myogenic cells for culture. J Embryol Exp Morphol. 1976 Aug;36(1):175–181. [PubMed] [Google Scholar]
  8. Caplan A. I., Syftestad G., Osdoby P. The development of embryonic bone and cartilage in tissue culture. Clin Orthop Relat Res. 1983 Apr;(174):243–263. [PubMed] [Google Scholar]
  9. Carrino D. A., Caplan A. I. Isolation and partial characterization of high-buoyant-density proteoglycans synthesized in ovo by embryonic chick skeletal muscle and heart. J Biol Chem. 1984 Oct 25;259(20):12419–12430. [PubMed] [Google Scholar]
  10. Carrino D. A., Caplan A. I. Isolation and preliminary characterization of proteoglycans synthesized by skeletal muscle. J Biol Chem. 1982 Dec 10;257(23):14145–14154. [PubMed] [Google Scholar]
  11. Carrino D. A., Lennon D. P., Caplan A. I. Extracellular matrix and the maintenance of the differentiated state: proteoglycans synthesized by replated chondrocytes and nonchondrocytes. Dev Biol. 1983 Sep;99(1):132–144. doi: 10.1016/0012-1606(83)90260-9. [DOI] [PubMed] [Google Scholar]
  12. Damle S. P., Cöster L., Gregory J. D. Proteodermatan sulfate isolated from pig skin. J Biol Chem. 1982 May 25;257(10):5523–5527. [PubMed] [Google Scholar]
  13. De Luca S., Heinegård D., Hascall V. C., Kimura J. H., Caplan A. I. Chemical and physical changes in proteoglycans during development of chick limb bud chondrocytes grown in vitro. J Biol Chem. 1977 Oct 10;252(19):6600–6608. [PubMed] [Google Scholar]
  14. Faltz L. L., Reddi A. H., Hascall G. K., Martin D., Pita J. C., Hascall V. C. Characteristics of proteoglycans extracted from the Swarm rat chondrosarcoma with associative solvents. J Biol Chem. 1979 Feb 25;254(4):1375–1380. [PubMed] [Google Scholar]
  15. Fisher L. W., Termine J. D., Dejter S. W., Jr, Whitson S. W., Yanagishita M., Kimura J. H., Hascall V. C., Kleinman H. K., Hassell J. R., Nilsson B. Proteoglycans of developing bone. J Biol Chem. 1983 May 25;258(10):6588–6594. [PubMed] [Google Scholar]
  16. Fujii N., Nagai Y. Isolation and characterization of a proteodermatan sulfate from calf skin. J Biochem. 1981 Nov;90(5):1249–1258. doi: 10.1093/oxfordjournals.jbchem.a133589. [DOI] [PubMed] [Google Scholar]
  17. Hascall V. C., Oegema T. R., Brown M., Caplan A. I. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem. 1976 Jun 10;251(11):3511–3519. [PubMed] [Google Scholar]
  18. Hassell J. R., Newsome D. A., Krachmer J. H., Rodrigues M. M. Macular corneal dystrophy: failure to synthesize a mature keratan sulfate proteoglycan. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3705–3709. doi: 10.1073/pnas.77.6.3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heinegård D., Lohmander S., Thyberg J. Cartilage proteoglycan aggregates. Electron-microscopic studies of native and fragmented molecules. Biochem J. 1978 Dec 1;175(3):913–919. doi: 10.1042/bj1750913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iozzo R. V., Wight T. N. Isolation and characterization of proteoglycans synthesized by human colon and colon carcinoma. J Biol Chem. 1982 Sep 25;257(18):11135–11144. [PubMed] [Google Scholar]
  22. Kanwar Y. S., Rosenzweig L. J., Linker A., Jakubowski M. L. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2272–2275. doi: 10.1073/pnas.80.8.2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kimura J. H., Osdoby P., Caplan A. I., Hascall V. C. Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J Biol Chem. 1978 Jul 10;253(13):4721–4729. [PubMed] [Google Scholar]
  24. Kjellén L., Pettersson I., Hök M. Cell-surface heparan sulfate: an intercalated membrane proteoglycan. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5371–5375. doi: 10.1073/pnas.78.9.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lennon D. P., Osdoby P., Carrino D. A., Vertel B. M., Caplan A. I. Isolation and characterization of chondrocytes and non-chondrocytes from high-density chick limb bud cell cultures. J Craniofac Genet Dev Biol. 1983;3(3):235–251. [PubMed] [Google Scholar]
  26. Pacifici M., Molinaro M. Developmental changes in glycosaminoglycans during skeletal muscle cell differentiation in culture. Exp Cell Res. 1980 Mar;126(1):143–152. doi: 10.1016/0014-4827(80)90479-6. [DOI] [PubMed] [Google Scholar]
  27. Rosenberg L., Hellmann W., Kleinschmidt A. K. Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J Biol Chem. 1975 Mar 10;250(5):1877–1883. [PubMed] [Google Scholar]
  28. Rosenberg L., Hellmann W., Kleinschmidt A. K. Macromolecular models of proteinpolysaccharides from bovine nasal cartilage based on electron microscopic studies. J Biol Chem. 1970 Aug 25;245(16):4123–4130. [PubMed] [Google Scholar]
  29. Thyberg J., Lohmander S., Heinegård D. Proteoglycans of hyaline cartilage: Electron-microscopic studies on isolated molecules. Biochem J. 1975 Oct;151(1):157–166. doi: 10.1042/bj1510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wagner W. D., Rowe H. A., Connor J. R. Biochemical characteristics of dissociatively isolated aortic proteoglycans and their binding capacity to hyaluronic acid. J Biol Chem. 1983 Sep 25;258(18):11136–11142. [PubMed] [Google Scholar]
  31. Wight T. N., Hascall V. C. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J Cell Biol. 1983 Jan;96(1):167–176. doi: 10.1083/jcb.96.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yanagishita M., Hascall V. C. Biosynthesis of proteoglycans by rat granulosa cells cultured in vitro. J Biol Chem. 1979 Dec 25;254(24):12355–12364. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES