Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1474–1487. doi: 10.1083/jcb.100.5.1474

The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections

PMCID: PMC2113849  PMID: 4039327

Abstract

High voltage electron microscopy of intact cells prepared by the critical point drying (CPD) procedure has become an important tool in the study of three-dimensional relationships between cytoplasmic organelles. It has been claimed that critical point-dried specimens reveal a structure that is not visible in sections of plastic-embedded material; it has also been claimed that this structure, in association with known cytoplasmic filaments, forms a meshwork of tapering threads ("microtrabecular lattice"). Alternatively, this structure might be a surface tension artifact produced during CPD. To test possible sources of artifacts during CPD, model fiber systems of known structure were used. It was found that traces of water or ethanol in the CO2 caused distortions and fusion of fibers in pure muscle actin, fibrin, collagen, chromatin, and microtubules that produce a structure very similar to the proposed "microtrabecular lattice." These structures were, however, well preserved if water and ethanol were totally excluded from the CO2. The same results were obtained with whole mounts of cultured cells. A "microtrabecular lattice" was obtained if some water or ethanol was present in the pressure chamber. On the other hand, when water or ethanol were totally excluded from the CO2 during CPD, cytoplasmic filaments were uniform in thickness similar to their appearance in sections of plastic-embedded cells. It is concluded that the "microtrabecular lattice" is a distorted image of the cytoplasmic filament network produced during CPD by traces of water or ethanol in the CO2.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr G. F., Engler W. F. Artifacts observed in critical-point-dried preparations of human chromosomes by electron microscopy. J Ultrastruct Res. 1980 Oct;73(1):27–33. doi: 10.1016/0022-5320(80)90113-6. [DOI] [PubMed] [Google Scholar]
  2. Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Otto J. J., Kane R. E., Bryan J. Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell. 1979 Jun;17(2):285–293. doi: 10.1016/0092-8674(79)90154-5. [DOI] [PubMed] [Google Scholar]
  5. Porter K. R., Tucker J. B. The ground substance of the living cell. Sci Am. 1981 Mar;244(3):56–67. doi: 10.1038/scientificamerican0381-56. [DOI] [PubMed] [Google Scholar]
  6. Ris H. Preparation of chromatin and chromosomes for electron microscopy. Methods Cell Biol. 1978;18:229–246. doi: 10.1016/s0091-679x(08)60141-7. [DOI] [PubMed] [Google Scholar]
  7. Schliwa M., van Blerkom J., Porter K. R. Stabilization and the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4329–4333. doi: 10.1073/pnas.78.7.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wolosewick J. J., Porter K. R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am J Anat. 1976 Nov;147(3):303–323. doi: 10.1002/aja.1001470305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES