Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1455–1465. doi: 10.1083/jcb.100.5.1455

Microvillus 110K-calmodulin: effects of nucleotides on isolated cytoskeletons and the interaction of the purified complex with F-actin

PMCID: PMC2113853  PMID: 3157690

Abstract

Microvilli isolated from intestinal epithelial cells contain a cytoskeletal Mr 110,000 polypeptide complexed with calmodulin (110K-CM) that is believed to link the microfilament core bundle laterally to the plasma membrane. Previous work has shown that physiological levels of ATP can partially solubilize the 110K-CM complex from isolated microvillus cytoskeletons or isolated microvilli. However, once extracted, the 110K-CM complex has been found to be difficult to maintain stably soluble in aqueous buffers. This is due to the presence of an endogenous ATPase (approximately 100 nmol Pi/min per mg at 37 degrees C) in microvillus cytoskeletal preparations that depletes the ATP with subsequent precipitation of 110K-CM. Addition of ATP to such precipitates resolubilizes 110K-CM. Inclusion of an ATP regenerating system in the solubilization of 110K-CM from cytoskeletons, or membrane- bound brush borders, increases the amount of 110K-CM solubilized. Solubilization of 110K-CM from microvillus cytoskeletons was found to require a divalent cation (Mg2+, Mn2+, or Co2+, but not Zn2+) and a nucleoside triphosphate (ATP, GTP, CTP, or ITP). ADP did not solubilize 110K-CM, but could partially inhibit ATP-dependent solubilization. Solubilized 110K was phosphorylated during extraction of microvillus cores with [gamma-32P]ATP, but this was unrelated to the solubilization of 110K-CM as the endogenous kinase was specific for ATP, whereas the solubilization was not. The 110K-CM was purified using ATP extraction of brush border cytoskeletons in the presence of an ATP regenerating system, gel filtration of the solubilized extract, an ATP depletion step to specifically precipitate 110K-CM with F-actin, and resolubilization followed by phosphocellulose chromatography. The purified complex was stably soluble in aqueous buffers both in the presence and absence of ATP. It bound almost quantitatively to F-actin in the absence of ATP, and showed nucleotide solubilization characteristics from F-actin similar to that found for solubilization of 110K-CM from microvillus cores. At low ATP levels, the binding to F- actin was increased in the presence of ADP. These results suggest that the purified complex has been isolated in a native form. The data confirm and extend the studies of Howe and Mooseker (1983, J. Cell Biol., 97:974-985) using a partially purified preparation of 110K-CM and further emphasize that 110K-CM is a stably water soluble complex and not an integral membrane protein.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bretscher A. Characterization and ultrastructural role of the major components of the intestinal microvillus cytoskeleton. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):871–879. doi: 10.1101/sqb.1982.046.01.081. [DOI] [PubMed] [Google Scholar]
  3. Bretscher A. Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6849–6853. doi: 10.1073/pnas.78.11.6849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bretscher A. Molecular architecture of the microvillus cytoskeleton. Ciba Found Symp. 1983;95:164–179. doi: 10.1002/9780470720769.ch10. [DOI] [PubMed] [Google Scholar]
  5. Bretscher A., Weber K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol. 1980 Jul;86(1):335–340. doi: 10.1083/jcb.86.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bretscher A., Weber K. Purification of microvilli and an analysis of the protein components of the microfilament core bundle. Exp Cell Res. 1978 Oct 15;116(2):397–407. doi: 10.1016/0014-4827(78)90463-9. [DOI] [PubMed] [Google Scholar]
  7. Bretscher A., Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980 Jul;20(3):839–847. doi: 10.1016/0092-8674(80)90330-x. [DOI] [PubMed] [Google Scholar]
  8. Burgess D. R., Prum B. E. Reevaluation of brush border motility: calcium induces core filament solution and microvillar vesiculation. J Cell Biol. 1982 Jul;94(1):97–107. doi: 10.1083/jcb.94.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coudrier E., Reggio H., Louvard D. Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli. EMBO J. 1983;2(3):469–475. doi: 10.1002/j.1460-2075.1983.tb01446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coudrier E., Reggio H., Louvard D. Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. J Mol Biol. 1981 Oct 15;152(1):49–66. doi: 10.1016/0022-2836(81)90095-4. [DOI] [PubMed] [Google Scholar]
  11. Glenney J. R., Jr, Bretscher A., Weber K. Calcium control of the intestinal microvillus cytoskeleton: its implications for the regulation of microfilament organizations. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6458–6462. doi: 10.1073/pnas.77.11.6458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glenney J. R., Jr, Glenney P. The microvillus 110K cytoskeletal protein is an integral membrane protein. Cell. 1984 Jul;37(3):743–751. doi: 10.1016/0092-8674(84)90410-0. [DOI] [PubMed] [Google Scholar]
  13. Glenney J. R., Jr, Kaulfus P., Matsudaira P., Weber K. F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J Biol Chem. 1981 Sep 10;256(17):9283–9288. [PubMed] [Google Scholar]
  14. Glenney J. R., Jr, Osborn M., Weber K. The intracellular localization of the microvillus 110K protein, a component considered to be involved in side-on membrane attachment of F-actin. Exp Cell Res. 1982 Mar;138(1):199–205. doi: 10.1016/0014-4827(82)90106-9. [DOI] [PubMed] [Google Scholar]
  15. Glenney J. R., Jr, Weber K. Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J Biol Chem. 1980 Nov 25;255(22):10551–10554. [PubMed] [Google Scholar]
  16. Howe C. L., Mooseker M. S. Characterization of the 110-kdalton actin-calmodulin-, and membrane-binding protein from microvilli of intestinal epithelial cells. J Cell Biol. 1983 Oct;97(4):974–985. doi: 10.1083/jcb.97.4.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Howe C. L., Mooseker M. S., Graves T. A. Brush-border calmodulin. A major component of the isolated microvillus core. J Cell Biol. 1980 Jun;85(3):916–923. doi: 10.1083/jcb.85.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  21. Matsudaira P. T., Burgess D. R. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol. 1979 Dec;83(3):667–673. doi: 10.1083/jcb.83.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsudaira P. T., Burgess D. R. Organization of the cross-filaments in intestinal microvilli. J Cell Biol. 1982 Mar;92(3):657–664. doi: 10.1083/jcb.92.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matsudaira P. T., Burgess D. R. Partial reconstruction of the microvillus core bundle: characterization of villin as a Ca++-dependent, actin-bundling/depolymerizing protein. J Cell Biol. 1982 Mar;92(3):648–656. doi: 10.1083/jcb.92.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mooseker M. S., Graves T. A., Wharton K. A., Falco N., Howe C. L. Regulation of microvillus structure: calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells. J Cell Biol. 1980 Dec;87(3 Pt 1):809–822. doi: 10.1083/jcb.87.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mukherjee T. M., Staehelin L. A. The fine-structural organization of the brush border of intestinal epithelial cells. J Cell Sci. 1971 May;8(3):573–599. doi: 10.1242/jcs.8.3.573. [DOI] [PubMed] [Google Scholar]
  26. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  27. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  28. Verner K., Bretscher A. Induced morphological changes in isolated microvilli: regulation of membrane topology in vitro by submembranous microfilaments. Eur J Cell Biol. 1983 Jan;29(2):187–192. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES