Abstract
Hyaluronate levels change dramatically during morphogenesis of various tissues and organs. Morphological detection of the exact temporal and spatial distribution patterns of hyaluronate may help to elucidate its role in morphogenesis. Since no specific direct method for visualizing hyaluronate with the light or electron microscope is currently available, we have developed a morphological probe by exploiting the high-affinity interaction of cartilage proteoglycan with hyaluronate. The core protein of this proteoglycan consists of a region that binds specifically to hyaluronate with a high association constant, and a region to which the majority of sulfated polysaccharide chains are covalently attached. The polysaccharide chains were removed by treatment with chondroitinase ABC, and the core protein, labeled with rhodamine, was used as the probe. This fluorescent probe binds reversibly and specifically to [3H]hyaluronate in a binding assay using ammonium sulfate precipitation of the core protein. The probe has been used to visualize the cell surface hyaluronate of rat fibrosarcoma cells, 3T3 cells, and SV-40 transformed 3T3 cells, three cell types with significantly different amounts of cell surface-associated hyaluronate.
Full Text
The Full Text of this article is available as a PDF (745.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Christner J. E., Brown M. L., Dziewiatkowski D. D. Interactions of cartilage proteoglycans with hyaluronate. Inhibition of the interaction by modified oligomers of hyaluronate. J Biol Chem. 1979 Jun 10;254(11):4624–4630. [PubMed] [Google Scholar]
- Ekblom P., Alitalo K., Vaheri A., Timpl R., Saxén L. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):485–489. doi: 10.1073/pnas.77.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher M., Solursh M. The influence of local environment on the organization of mesenchyme cells. J Embryol Exp Morphol. 1979 Jan;49:295–306. [PubMed] [Google Scholar]
- Fitzharris T. P., Markwald R. R. Cellular migration through the cardiac jelly matrix: a stereoanalysis by high-voltage electron microscopy. Dev Biol. 1982 Aug;92(2):315–329. doi: 10.1016/0012-1606(82)90178-6. [DOI] [PubMed] [Google Scholar]
- Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gay S., Martin G. R., Muller P. K., Timpl R., Kuhn K. Simultaneous synthesis of types I and III collagen by fibroblasts in culture. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4037–4040. doi: 10.1073/pnas.73.11.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hascall V. C., Heinegård D. Aggregation of cartilage proteoglycans. II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction. J Biol Chem. 1974 Jul 10;249(13):4242–4249. [PubMed] [Google Scholar]
- Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Linsenmayer T. F., Hendrix M. J., Little C. D. Production and characterization of a monoclonal antibody to chicken type I collagen. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3703–3707. doi: 10.1073/pnas.76.8.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linsenmayer T. F., Hendrix M. J. Monoclonal antibodies to connective tissue macromolecules: type II collagen. Biochem Biophys Res Commun. 1980 Jan 29;92(2):440–446. doi: 10.1016/0006-291x(80)90352-6. [DOI] [PubMed] [Google Scholar]
- Markwald R. R., Fitzharris T. P., Bernanke D. H. Morphologic recognition of complex carbohydrates in embryonic cardiac extracellular matrix. J Histochem Cytochem. 1979 Aug;27(8):1171–1173. doi: 10.1177/27.8.479561. [DOI] [PubMed] [Google Scholar]
- Mayer B. W., Jr, Hay E. D., Hynes R. O. Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa. Dev Biol. 1981 Mar;82(2):267–286. doi: 10.1016/0012-1606(81)90451-6. [DOI] [PubMed] [Google Scholar]
- Ohya T., Kaneko Y. Novel hyaluronidase from streptomyces. Biochim Biophys Acta. 1970 Mar 18;198(3):607–609. doi: 10.1016/0005-2744(70)90139-7. [DOI] [PubMed] [Google Scholar]
- Polansky J. R., Toole B. P., Gross J. Brain hyaluronidase: changes in activity during chick development. Science. 1974 Mar 1;183(4127):862–864. doi: 10.1126/science.183.4127.862. [DOI] [PubMed] [Google Scholar]
- Pratt R. M., Larsen M. A., Johnston M. C. Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix. Dev Biol. 1975 Jun;44(2):298–305. doi: 10.1016/0012-1606(75)90400-5. [DOI] [PubMed] [Google Scholar]
- Rohde H., Wick G., Timpl R. Immunochemical characterization of the basement membrane glycoprotein laminin. Eur J Biochem. 1979 Dec;102(1):195–201. doi: 10.1111/j.1432-1033.1979.tb06280.x. [DOI] [PubMed] [Google Scholar]
- Singley C. T., Solursh M. The spatial distribution of hyaluronic acid and mesenchymal condensation in the embryonic chick wing. Dev Biol. 1981 May;84(1):102–120. doi: 10.1016/0012-1606(81)90375-4. [DOI] [PubMed] [Google Scholar]
- Solursh M., Fisher M., Singley C. T. The synthesis of hyaluronic acid by ectoderm during early organogenesis in the chick embryo. Differentiation. 1979;14(1-2):77–85. doi: 10.1111/j.1432-0436.1979.tb01014.x. [DOI] [PubMed] [Google Scholar]
- Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
- Toole B. P., Biswas C., Gross J. Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6299–6303. doi: 10.1073/pnas.76.12.6299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underhill C. B., Chi-Rosso G., Toole B. P. Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells. J Biol Chem. 1983 Jul 10;258(13):8086–8091. [PubMed] [Google Scholar]
- Underhill C. B., Toole B. P. Binding of hyaluronate to the surface of cultured cells. J Cell Biol. 1979 Aug;82(2):475–484. doi: 10.1083/jcb.82.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underhill C. B., Toole B. P. Transformation-dependent loss of the hyaluronate-containing coats of cultured cells. J Cell Physiol. 1982 Feb;110(2):123–128. doi: 10.1002/jcp.1041100204. [DOI] [PubMed] [Google Scholar]
- Vertel B. M., Dorfman A. Simultaneous localization of type II collagen and core protein of chondroitin sulfate proteoglycan in individual chondrocytes. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1261–1264. doi: 10.1073/pnas.76.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Mark H., von der Mark K., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol. 1976 Feb;48(2):237–249. doi: 10.1016/0012-1606(76)90088-9. [DOI] [PubMed] [Google Scholar]