Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1488–1492. doi: 10.1083/jcb.100.5.1488

Differences in the volume distributions of human lung mast cell granules and lipid bodies: evidence that the size of these organelles is regulated by distinct mechanisms

PMCID: PMC2113860  PMID: 3988795

Abstract

We analyzed transmission electron micrographs of human lung mast cells by digitized planimetry and point counting to determine the cross- sectional areas of two distinct cytoplasmic organelles: specific granules and lipid bodies. Specific granules have a limiting membrane and often contain one or more cylindrical scroll-like inclusions. By contrast, lipid bodies are on average much larger than granules and lack both limiting membranes and inclusions. The measured cross- sectional areas of lipid bodies and scroll-containing granules were converted to equivalent volumes, and the noise in the frequency distribution of these volumes was smoothed using a moving bin technique. This analysis revealed (a) a periodic, multimodal distribution of granule equivalent volumes in which the modes fell at volumes that were integral multiples of the volume defined by the first mode (the "unit volume"), and (b) a modal granule equivalent volume frequency that occurred at a magnitude equal to four "unit volumes." Thus, specific granules appear to be composed of units of a narrowly fixed volume. Furthermore, the mean volume of intragranule inclusions was 0.0061 mu3, a value very similar to that calculated for the "unit volume" (0.0071 mu3). This result suggests that each "unit volume" comprising the individual scroll-type granules contains (or is capable of generating or accommodating) a single scroll-like inclusion. In contrast to the specific granules, mast cell lipid bodies lack a periodic, multimodal volume distribution. Taken together, these findings suggest that the volumes of human lung mast cell granules and lipid bodies are regulated by distinct mechanisms.

Full Text

The Full Text of this article is available as a PDF (624.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caulfield J. P., Lewis R. A., Hein A., Austen K. F. Secretion in dissociated human pulmonary mast cells. Evidence for solubilization of granule contents before discharge. J Cell Biol. 1980 May;85(2):299–312. doi: 10.1083/jcb.85.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Combs J. W., Lagunoff D., Benditt E. P. Differentiation and proliferation of embryonic mast cells of the rat. J Cell Biol. 1965 Jun;25(3):577–592. doi: 10.1083/jcb.25.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dvorak A. M., Dickersin G. R. Crohn's disease: electron microscopic studies. Pathol Annu. 1979;14(Pt 2):259–306. [PubMed] [Google Scholar]
  4. Dvorak A. M., Galli S. J., Schulman E. S., Lichtenstein L. M., Dvorak H. F. Basophil and mast cell degranulation: ultrastructural analysis of mechanisms of mediator release. Fed Proc. 1983 May 15;42(8):2510–2515. [PubMed] [Google Scholar]
  5. Dvorak A. M., Hammond M. E., Dvorak H. F., Karnovsky M. J. Loss of cell surface material from peritoneal exudate cells associated with lymphocyte-mediated inhibition of macrophage migration from capillary tubes. Lab Invest. 1972 Dec;27(6):561–574. [PubMed] [Google Scholar]
  6. Galli S. J., Dvorak A. M., Dvorak H. F. Basophils and mast cells: morphologic insights into their biology, secretory patterns, and function. Prog Allergy. 1984;34:1–141. [PubMed] [Google Scholar]
  7. Galli S. J., Dvorak A. M., Marcum J. A., Ishizaka T., Nabel G., Der Simonian H., Pyne K., Goldin J. M., Rosenberg R. D., Cantor H. Mast cell clones: a model for the analysis of cellular maturation. J Cell Biol. 1982 Nov;95(2 Pt 1):435–444. doi: 10.1083/jcb.95.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HENNIG A., ELIAS H. Theoretical and experimental investigations of sections of rotatory ellipsoids. Z Wiss Mikrosk. 1963 Mar;65:133–145. [PubMed] [Google Scholar]
  9. Hammel I., Lagunoff D., Bauza M., Chi E. Periodic, multimodal distribution of granule volumes in mast cells. Cell Tissue Res. 1983;228(1):51–59. doi: 10.1007/BF00206264. [DOI] [PubMed] [Google Scholar]
  10. Heglund N. C., Fedak M. A., Taylor C. R., Cavagna G. A. Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J Exp Biol. 1982 Apr;97:57–66. doi: 10.1242/jeb.97.1.57. [DOI] [PubMed] [Google Scholar]
  11. Kawanami O., Ferrans V. J., Fulmer J. D., Crystal R. G. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders. Lab Invest. 1979 Jun;40(6):717–734. [PubMed] [Google Scholar]
  12. LOUD A. V., BARANY W. C., PACK B. A. QUANTITATIVE EVALUATION OF CYTOPLASMIC STRUCTURES IN ELECTRON MICROGRAPHS. Lab Invest. 1965 Jun;14:996–1008. [PubMed] [Google Scholar]
  13. Matteson D. R., Kriebel M. E., Llados F. A statistical model indicates that miniature end-plate potentials and unitary evoked end-plate potentials are composed of subunits. J Theor Biol. 1981 Jun 7;90(3):337–363. doi: 10.1016/0022-5193(81)90316-7. [DOI] [PubMed] [Google Scholar]
  14. Miller D. C., Weinstock M. M., Magleby K. L. Is the quantum of transmitter release composed of subunits? Nature. 1978 Jul 27;274(5669):388–390. doi: 10.1038/274388a0. [DOI] [PubMed] [Google Scholar]
  15. Nadelhaft I. Measurement of the size distribution of zymogen granules from rat pancreas. Biophys J. 1973 Oct;13(10):1014–1029. doi: 10.1016/S0006-3495(73)86042-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rahamimoff R., Yaari Y. Delayed release of transmitter at the frog neuromuscular junction. J Physiol. 1973 Jan;228(1):241–257. doi: 10.1113/jphysiol.1973.sp010084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schulman E. S., MacGlashan D. W., Jr, Peters S. P., Schleimer R. P., Newball H. H., Lichtenstein L. M. Human lung mast cells: purification and characterization. J Immunol. 1982 Dec;129(6):2662–2667. [PubMed] [Google Scholar]
  18. WEIBEL E. R., GOMEZ D. M. A principle for counting tissue structures on random sections. J Appl Physiol. 1962 Mar;17:343–348. doi: 10.1152/jappl.1962.17.2.343. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES