Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1357–1362. doi: 10.1083/jcb.100.5.1357

Depolymerization of microtubules increases the motional freedom of molecular probes in cellular plasma membranes

PMCID: PMC2113863  PMID: 3988793

Abstract

Depolymerization of microtubules resulted in an increase in the motional freedom of molecular probes in the plasma membranes of Chinese hamster ovary cells expressed by the order parameter, S, measured with two different lipid-soluble spin label probes, 5-doxyl stearic acid and 16-doxyl methylstearate. Treatment with a variety of microtubule- depolymerizing agents, including Colcemid, colchicine, vinblastine, podophyllotoxin, and griseofulvin, all had similar effects on motional freedom of the probes whereas beta-lumicolchicine was inactive. Several independent lines of evidence suggest that these changes in motional freedom of the probes were not the direct result of the interaction of these relatively hydrophobic drugs with the plasma membrane: the effects of the drugs were not immediate; the dose response of the Colcemid effect was the same as the dose response for depolymerization of microtubules; taxol, which stabilizes microtubules but does not affect motional freedom in the membranes, blocked the effect of Colcemid on motional freedom; a mutant cell line which is resistant to colchicine because of reduced uptake of the drug showed no effects of colchicine on probe motional freedom; and a Colcemid-resistant mutant cell line with an altered beta-tubulin showed no effect of Colcemid on motional freedom in the membrane. These results support the hypothesis that microtubules might affect, directly or indirectly, plasma membrane functions.

Full Text

The Full Text of this article is available as a PDF (664.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Clark J. I. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4976–4980. doi: 10.1073/pnas.72.12.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aszalos A., Bradlaw J. A., Reynaldo E. F., Yang G. C., El-Hage A. N. Studies on the action of nystatin on cultured rat myocardial cells and cell membranes, isolated rat hearts, and intact rats. Biochem Pharmacol. 1984 Dec 1;33(23):3779–3786. doi: 10.1016/0006-2952(84)90040-6. [DOI] [PubMed] [Google Scholar]
  3. Bales B. L., Lesin E. S., Oppenheimer S. B. On cell membrane lipid fluidity and plant lectin agglutinability. A spin label study of mouse ascites tumor cells. Biochim Biophys Acta. 1977 Mar 1;465(2):400–407. doi: 10.1016/0005-2736(77)90089-x. [DOI] [PubMed] [Google Scholar]
  4. Bernier-Valentin F., Aunis D., Rousset B. Evidence for tubulin-binding sites on cellular membranes: plasma membranes, mitochondrial membranes, and secretory granule membranes. J Cell Biol. 1983 Jul;97(1):209–216. doi: 10.1083/jcb.97.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhattacharyya B., Volff J. Membrane-bound tubulin in brain and thyroid tissue. J Biol Chem. 1975 Oct 10;250(19):7639–7646. [PubMed] [Google Scholar]
  6. Butterfield D. A., Chesnut D. B., Roses A. D., Appel S. H. Electron spin resonance studies of erythrocytes from patients with myotonic muscular dystrophy. Proc Natl Acad Sci U S A. 1974 Mar;71(3):909–913. doi: 10.1073/pnas.71.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butterfield D. A., Roses A. D., Cooper M. L., Appel S. H., Chesnut D. B. A comparative electron spin resonance study of the erythrocyte membrane in myotonic muscular dystrophy. Biochemistry. 1974 Dec 3;13(25):5078–5082. doi: 10.1021/bi00722a003. [DOI] [PubMed] [Google Scholar]
  8. Cabral F., Sobel M. E., Gottesman M. M. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell. 1980 May;20(1):29–36. doi: 10.1016/0092-8674(80)90231-7. [DOI] [PubMed] [Google Scholar]
  9. Collot M., Louvard D., Singer S. J. Lysosomes are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci U S A. 1984 Feb;81(3):788–792. doi: 10.1073/pnas.81.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Esser A. F., Russell S. W. Membrane perturbation of macrophages stimulated by bacterial lipopolysaccharide. Biochem Biophys Res Commun. 1979 Mar 30;87(2):532–540. doi: 10.1016/0006-291x(79)91828-x. [DOI] [PubMed] [Google Scholar]
  11. Gupta R. S., Siminovitch L. Genetic and biochemical studies with the adenosine analogs toyocamycin and tubercidin: mutation at the adenosine kinase locus in Chinese hamster cells. Somatic Cell Genet. 1978 Nov;4(6):715–735. doi: 10.1007/BF01543160. [DOI] [PubMed] [Google Scholar]
  12. Hagmann J., Fishman P. H. Modulation of adenylate cyclase in intact macrophages by microtubules. Opposing actions of colchicine and chemotactic factor. J Biol Chem. 1980 Apr 10;255(7):2659–2662. [PubMed] [Google Scholar]
  13. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  14. Insel P. A., Kennedy M. S. Colchicine potentiates beta-adrenoreceptor-stimulated cyclic AMP in lymphoma cells by an action distal to the receptor. Nature. 1978 Jun 8;273(5662):471–473. doi: 10.1038/273471a0. [DOI] [PubMed] [Google Scholar]
  15. Lai C. S., Hopwood L. E., Swartz H. M. ESR studies on membrane fluidity of Chinese hamster ovary cells grown on microcarriers and in suspension. Exp Cell Res. 1980 Dec;130(2):437–442. doi: 10.1016/0014-4827(80)90022-1. [DOI] [PubMed] [Google Scholar]
  16. Lai C. S., Hopwood L. E., Swartz H. M. Electron spin resonance studies of changes in membrane fluidity of Chinese hamster ovary cells during the cell cycle. Biochim Biophys Acta. 1980 Oct 16;602(1):117–126. doi: 10.1016/0005-2736(80)90294-1. [DOI] [PubMed] [Google Scholar]
  17. Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  18. Malawista S. E., Oliver J. M., Rudolph S. A. Microtubules and cyclic AMP in human leukocytes: on the order of things. J Cell Biol. 1978 Jun;77(3):881–886. doi: 10.1083/jcb.77.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Manfredi J. J., Parness J., Horwitz S. B. Taxol binds to cellular microtubules. J Cell Biol. 1982 Sep;94(3):688–696. doi: 10.1083/jcb.94.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McFarland B. G., McConnell H. M. Bent fatty acid chains in lecithin bilayers. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1274–1278. doi: 10.1073/pnas.68.6.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pfeffer S. R., Drubin D. G., Kelly R. B. Identification of three coated vesicle components as alpha- and beta-tubulin linked to a phosphorylated 50,000-dalton polypeptide. J Cell Biol. 1983 Jul;97(1):40–47. doi: 10.1083/jcb.97.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rottem S., Hubbell W. L., Hayflick L., McConnell H. M. Motion of fatty acid spin labels in the plasma membrane of mycoplasma. Biochim Biophys Acta. 1970;219(1):104–113. doi: 10.1016/0005-2736(70)90065-9. [DOI] [PubMed] [Google Scholar]
  25. Rudolph S. A., Greengard P., Malawista S. E. Effects of colchicine on cyclic AMP levels in human leukocytes. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3404–3408. doi: 10.1073/pnas.74.8.3404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schroit A. J., Rottem S., Gallily R. Motion of spin-labeled fatty acids in murine macrophages. Relation to cellular phagocytic activity. Biochim Biophys Acta. 1976 Mar 19;426(3):499–512. doi: 10.1016/0005-2736(76)90394-1. [DOI] [PubMed] [Google Scholar]
  27. Trudell J. R., Hubbell W. L., Cohen E. N. Electron spin resonance studies with the volatile anesthetics on phospholipid model membranes. Ann N Y Acad Sci. 1973 Dec 31;222:530–538. doi: 10.1111/j.1749-6632.1973.tb15285.x. [DOI] [PubMed] [Google Scholar]
  28. Trudell J. R., Hubbell W. L., Cohen E. N. Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):328–334. doi: 10.1016/s0005-2736(73)80001-x. [DOI] [PubMed] [Google Scholar]
  29. Wehland J., Willingham M. C., Gallo M. G., Pastan I. The morphologic pathway of exocytosis of the vesicular stomatitis virus G protein in cultured fibroblasts. Cell. 1982 Apr;28(4):831–841. doi: 10.1016/0092-8674(82)90062-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES