Abstract
We investigated the luminal surface of the continuous endothelium of the microvasculature of the murine heart and diaphragm to find out whether it has differentiated microdomains. The probes were ferritin molecules, cationized to pI's 6.8, 7.15, 7.6, 8.0 and 8.4, which were introduced by retrograde or anterograde perfusion through the aorta or vena cava after the blood was removed from the vasculature. The pattern of labeling was analyzed by electron microscopy and assessed quantitatively by morphometry in arterioles, capillaries, and venules identified in bipolar microvascular fields in the diaphragm. The results showed that the plasmalemma proper was heavily but discontinuously labeled by all cationized ferritins (CF) used, the labeling being less extensive on the venular endothelium. CF had access as individual molecules to a fraction of the vesicular population opened on the luminal front of the endothelium. Plasmalemmal vesicle labeling increased from approximately 10 to approximately 25% as the pI decreased from 8.4 to 6.8. Vesicle labeling also increased with CF concentration in the perfusate. All CF binding sites were removed by pronase and papain. Heparinase and heparitinase caused only a slight reduction in CF labeling. Neuraminidase decreased the extent and density of labeling, especially on the plasmalemma proper of the venular endothelium; this decrease was particularly pronounced in old animals.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bundgaard M., Hagman P., Crone C. The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res. 1983 May;25(3):358–368. doi: 10.1016/0026-2862(83)90025-0. [DOI] [PubMed] [Google Scholar]
- Clementi F., Palade G. E. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol. 1969 Apr;41(1):33–58. doi: 10.1083/jcb.41.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clough G., Michel C. C. The role of vesicles in the transport of ferritin through frog endothelium. J Physiol. 1981 Jun;315:127–142. doi: 10.1113/jphysiol.1981.sp013737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clough G. The steady-state transport of cationized ferritin by endothelial cell vesicles. J Physiol. 1982 Jul;328:389–401. doi: 10.1113/jphysiol.1982.sp014272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
- Danon D., Laver-Rudich Z., Skutelsky E. Surface charge and flow properties of endothelial membranes in aging rats. Mech Ageing Dev. 1980 Sep-Oct;14(1-2):145–153. doi: 10.1016/0047-6374(80)90113-x. [DOI] [PubMed] [Google Scholar]
- Görög P., Born G. V. Increased uptake of circulating low-density lipoproteins and fibrinogen by arterial walls after removal of sialic acids from their endothelial surface. Br J Exp Pathol. 1982 Aug;63(4):447–451. [PMC free article] [PubMed] [Google Scholar]
- Görög P., Schraufstätter I., Born G. V. Effect of removing sialic acids from endothelium on the adherence of circulating platelets in arteries in vivo. Proc R Soc Lond B Biol Sci. 1982 Mar 22;214(1197):471–480. doi: 10.1098/rspb.1982.0022. [DOI] [PubMed] [Google Scholar]
- Laver-Rudich Z., Skutelsky E., Danon D. Age-related changes in aortic intima of rats. J Gerontol. 1978 May;33(3):337–346. doi: 10.1093/geronj/33.3.337. [DOI] [PubMed] [Google Scholar]
- Loudon M. F., Michel C. C., White I. F. The labelling of vesicles in frog endothelial cells with ferritin. J Physiol. 1979 Nov;296:97–112. doi: 10.1113/jphysiol.1979.sp012993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelikan P., Gimbrone M. A., Jr, Cotran R. S. Distribution and movement of anionic cell surface sites in cultured human vascular endothelial cells. Atherosclerosis. 1979 Jan;32(1):69–80. doi: 10.1016/0021-9150(79)90148-5. [DOI] [PubMed] [Google Scholar]
- Pietra G. G., Fishman A. P., Lanken P. N., Sampson P., Hansen-Flaschen J. Permeability of pulmonary endothelium to neutral and charged macromolecules. Ann N Y Acad Sci. 1982;401:241–247. doi: 10.1111/j.1749-6632.1982.tb25723.x. [DOI] [PubMed] [Google Scholar]
- Ryan G. B., Majno G. Acute inflammation. A review. Am J Pathol. 1977 Jan;86(1):183–276. [PMC free article] [PubMed] [Google Scholar]
- Simionescu D., Simionescu M. Differentiated distribution of the cell surface charge on the alveolar-capillary unit. Characteristic paucity of anionic sites on the air-blood barrier. Microvasc Res. 1983 Jan;25(1):85–100. doi: 10.1016/0026-2862(83)90045-6. [DOI] [PubMed] [Google Scholar]
- Simionescu M., Simionescu N., Palade G. E. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol. 1982 Aug;94(2):406–413. doi: 10.1083/jcb.94.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu M., Simionescu N., Palade G. E. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J Cell Biol. 1982 Nov;95(2 Pt 1):425–434. doi: 10.1083/jcb.95.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N. Cellular aspects of transcapillary exchange. Physiol Rev. 1983 Oct;63(4):1536–1579. doi: 10.1152/physrev.1983.63.4.1536. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981 Sep;90(3):605–613. doi: 10.1083/jcb.90.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol. 1972 May;53(2):365–392. doi: 10.1083/jcb.53.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. I. Bipolar microvascular fields. Microvasc Res. 1978 Jan;15(1):1–16. doi: 10.1016/0026-2862(78)90001-8. [DOI] [PubMed] [Google Scholar]
- Skutelsky E., Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol. 1976 Oct;71(1):232–241. doi: 10.1083/jcb.71.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner M. R., Clough G., Michel C. C. The effects of cationised ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc Res. 1983 Mar;25(2):205–222. doi: 10.1016/0026-2862(83)90016-x. [DOI] [PubMed] [Google Scholar]
- Wagner R. C., Casley-Smith J. R. Review. Endothelial vesicles. Microvasc Res. 1981 May;21(3):267–298. doi: 10.1016/0026-2862(81)90011-x. [DOI] [PubMed] [Google Scholar]
- Wagner R. C., Robinson C. S., Cross P. J., Devenny J. J. Endocytosis and exocytosis of transferrin by isolated capillary endothelium. Microvasc Res. 1983 May;25(3):387–396. doi: 10.1016/0026-2862(83)90028-6. [DOI] [PubMed] [Google Scholar]
- Williams S. K., Devenny J. J., Bitensky M. W. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2393–2397. doi: 10.1073/pnas.78.4.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]