Abstract
Five different fibroblast strains derived from donors of a wide range of ages were used for investigation of senescence-associated changes in the organization of intermediate filaments (IFs) and the activity of cell locomotion. Results of immunofluorescence microscopy demonstrate that, in large and flat in vitro aged fibroblasts, vimentin-containing IFs are distributed as unusually organized large bundles. Electron microscopic examination shows that these large bundles are indeed composed of filaments of 8-10 nm. Such a profile of large bundles is rarely seen in young fibroblasts whose IFs are usually interdispersed among microtubules. Within the large filament bundles of senescent fibroblasts, cross-bridge-like extensions are frequently observed along the individual IFs. Immunogold labeling with antibody to one of the cross-bridging proteins, p50, further illustrates the abundance of interfilament links within the IF bundles. The senescence-related increase in interfilament association was also supported by the results of co-precipitation between vimentin and an associated protein of 50,000 D. Time-lapse cinematographic studies of cell locomotion reveal that accompanying aging, fibroblasts have a significantly reduced ability to translocate across a solid substratum. These results led me to suggest that the increased interfilament links via cross-bridges may in part contribute to the mechanism that orchestrates the formation of large filament bundles. The presence of enormous bundles in the cytoplasm may physically impede the efficiency of locomotion for these nondividing cells.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blose S. H., Meltzer D. I., Feramisco J. R. 10-nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin. J Cell Biol. 1984 Mar;98(3):847–858. doi: 10.1083/jcb.98.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman P. D., Daniel C. W. Aging of human fibroblasts in vitro: surface features and behavior of aging WI 38 cells. Mech Ageing Dev. 1975 Mar-Apr;4(2):147–158. doi: 10.1016/0047-6374(75)90016-0. [DOI] [PubMed] [Google Scholar]
- Dale B. A., Holbrook K. A., Steinert P. M. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature. 1978 Dec 14;276(5689):729–731. doi: 10.1038/276729a0. [DOI] [PubMed] [Google Scholar]
- Faulk W. P., Taylor G. M. An immunocolloid method for the electron microscope. Immunochemistry. 1971 Nov;8(11):1081–1083. doi: 10.1016/0019-2791(71)90496-4. [DOI] [PubMed] [Google Scholar]
- Geisler N., Kaufmann E., Fischer S., Plessmann U., Weber K. Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J. 1983;2(8):1295–1302. doi: 10.1002/j.1460-2075.1983.tb01584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Glicksman M. A., Willard M. B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol. 1984 Apr;98(4):1523–1536. doi: 10.1083/jcb.98.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horisberger M., Rosset J., Bauer H. Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope. Experientia. 1975 Oct 15;31(10):1147–1149. doi: 10.1007/BF02326761. [DOI] [PubMed] [Google Scholar]
- Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
- Krueger J. G., Wang E., Goldberg A. R. Evidence that the src gene product of Rous sarcoma virus is membrane associated. Virology. 1980 Feb;101(1):25–40. doi: 10.1016/0042-6822(80)90480-8. [DOI] [PubMed] [Google Scholar]
- Lawson D. Epinemin: a new protein associated with vimentin filaments in non-neural cells. J Cell Biol. 1983 Dec;97(6):1891–1905. doi: 10.1083/jcb.97.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liem R. K., Chin S. S., Moraru E., Wang E. Monoclonal antibodies to epitopes on different regions of the 200 000 dalton neurofilament protein. Probes for the geometry of the filament. Exp Cell Res. 1985 Feb;156(2):419–428. doi: 10.1016/0014-4827(85)90548-8. [DOI] [PubMed] [Google Scholar]
- Martin G. M., Sprague C. A., Norwood T. H., Pendergrass W. R., Bornstein P., Hoehn H., Arend W. P. Do hyperplastoid cell lines "differentiate themselves to death"? Adv Exp Med Biol. 1975;53:67–90. [PubMed] [Google Scholar]
- Pereira-Smith O. M., Smith J. R. Expression of SV40 T antigen in finite life-span hybrids of normal and SV40-transformed fibroblasts. Somatic Cell Genet. 1981 Jul;7(4):411–421. doi: 10.1007/BF01542986. [DOI] [PubMed] [Google Scholar]
- Pfeffer L. M., Wang E., Landsberger F. R., Tamm I. Assays to measure plasma membrane and cytoskeletal changes in interferon-treated cells. Methods Enzymol. 1981;79(Pt B):461–473. doi: 10.1016/s0076-6879(81)79060-8. [DOI] [PubMed] [Google Scholar]
- Pfeffer L. M., Wang E., Tamm I. Interferon effects on microfilament organization, cellular fibronectin distribution, and cell motility in human fibroblasts. J Cell Biol. 1980 Apr;85(1):9–17. doi: 10.1083/jcb.85.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raju T., Bignami A., Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981 Jul 30;85(2):344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
- SWIM H. E., PARKER R. F. Culture characteristics of human fibroblasts propagated serially. Am J Hyg. 1957 Sep;66(2):235–243. doi: 10.1093/oxfordjournals.aje.a119897. [DOI] [PubMed] [Google Scholar]
- Schmitt F. O. Fibrous proteins--neuronal organelles. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092–1101. doi: 10.1073/pnas.60.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein G. H., Yanishevsky R. M. Entry into S phase is inhibited in two immortal cell lines fused to senescent human diploid cells. Exp Cell Res. 1979 Apr;120(1):155–165. doi: 10.1016/0014-4827(79)90546-9. [DOI] [PubMed] [Google Scholar]
- Wang E., Cairncross J. G., Yung W. K., Garber E. A., Liem R. K. An intermediate filament-associated protein, p50, recognized by monoclonal antibodies. J Cell Biol. 1983 Nov;97(5 Pt 1):1507–1514. doi: 10.1083/jcb.97.5.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang E., Cross R. K., Choppin P. W. Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia. J Cell Biol. 1979 Nov;83(2 Pt 1):320–337. doi: 10.1083/jcb.83.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang E., Gundersen D. Increased organization of cytoskeleton accompanying the aging of human fibroblasts in vitro. Exp Cell Res. 1984 Sep;154(1):191–202. doi: 10.1016/0014-4827(84)90679-7. [DOI] [PubMed] [Google Scholar]
- Willard M., Simon C. Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell. 1983 Dec;35(2 Pt 1):551–559. doi: 10.1016/0092-8674(83)90189-7. [DOI] [PubMed] [Google Scholar]
- Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolosewick J. J., Porter K. R. Observation on the morphological heterogeneity of WI-38 cells. Am J Anat. 1977 Jun;149(2):197–225. doi: 10.1002/aja.1001490206. [DOI] [PubMed] [Google Scholar]
- Wong J., Hutchison S. B., Liem R. K. An isoelectric variant of the 150,000-dalton neurofilament polypeptide. Evidence that phosphorylation state affects its association with the filament. J Biol Chem. 1984 Sep 10;259(17):10867–10874. [PubMed] [Google Scholar]