Abstract
Pertussis toxin treatment of rabbit peritoneal neutrophils causes a concentration-dependent inhibition of granule enzyme secretion induced by formylmethionyl-leucyl-phenylalanine, C5a, and leukotriene B4. It also inhibits chemotaxis induced by formylmethionyl-leucyl- phenylalanine. The same toxin treatment, however, has no effect on granule enzyme secretion induced by the calcium ionophore A23187 or phorbol 12-myristate 13-acetate. Moreover, pertussis toxin treatment does not affect either the number or affinity of the formylpeptide receptors on the neutrophil nor does it have any effect on the unstimulated levels of cyclic AMP (cAMP) or the transient rise in cAMP induced by chemotactic factor stimulation in these cells. We hypothesize that pertussis toxin, as in other cells, interacts with a GTP binding regulatory protein identical with or analogous to either Ni or transducin which mediates the receptor-induced inhibition or activation of a target protein or proteins required in neutrophil activation. The nature of the target protein is unknown, but it is not the catalytic unit of adenylate cyclase. The target protein acts after binding of chemotactic factor to its receptor in the sequence that leads to the receptor-induced rise in intracellular Ca2+. It does not affect the responses elicited by the direct introduction of calcium into the cells or the activity of protein kinase C.
Full Text
The Full Text of this article is available as a PDF (661.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai H., Munoz J. J. Crystallization of pertussigen from Bordetella pertussis. Infect Immun. 1981 Jan;31(1):495–499. doi: 10.1128/iai.31.1.495-499.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bokoch G. M., Gilman A. G. Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell. 1984 Dec;39(2 Pt 1):301–308. doi: 10.1016/0092-8674(84)90008-4. [DOI] [PubMed] [Google Scholar]
- Fantone J., Senior R. M., Kreutzer D. L., Jones M., Ward P. A. Biochemical quantitation of the chemotactic factor inactivator activity in human serum. J Lab Clin Med. 1979 Jan;93(1):17–24. [PubMed] [Google Scholar]
- García-Sáinz J. A., Boyer J. L., Michel T., Sawyer D., Stiles G. L., Dohlman H., Lefkowitz R. J. Effect of pertussis toxin on alpha 2-adrenoceptors: decreased formation of the high-affinity state for agonists. FEBS Lett. 1984 Jun 25;172(1):95–98. doi: 10.1016/0014-5793(84)80881-9. [DOI] [PubMed] [Google Scholar]
- Hill H. R., Estensen R. D., Quie P. G., Hogan N. A., Goldberg N. D. Modulation of human neutrophil chemotactic responses by cyclic 3',5'-guanosine monophosphate and cyclic 3',5'-adenosine monophosphate. Metabolism. 1975 Mar;24(3):447–456. doi: 10.1016/0026-0495(75)90124-9. [DOI] [PubMed] [Google Scholar]
- Hyslop P. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G., Sklar L. A. Evidence for N-formyl chemotactic peptide-stimulated GTPase activity in human neutrophil homogenates. FEBS Lett. 1984 Jan 23;166(1):165–169. doi: 10.1016/0014-5793(84)80065-4. [DOI] [PubMed] [Google Scholar]
- Jackowski S., Sha'afi R. I. Response of adenosine cyclic 3',5'-monophosphate level in rabbit neutrophils to the chemotactic peptide formyl-methionyl-leucyl-phenylalanine. Mol Pharmacol. 1979 Sep;16(2):473–481. [PubMed] [Google Scholar]
- Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. doi: 10.1073/pnas.79.10.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller H. U., Gerisch G., Wissler J. H. A transient rise in cyclic AMP levels following chemotactic stimulation of neutrophil granulocytes. Cell Biol Int Rep. 1979 Dec;3(9):759–765. doi: 10.1016/0309-1651(79)90082-1. [DOI] [PubMed] [Google Scholar]
- Koo C., Lefkowitz R. J., Snyderman R. The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem Biophys Res Commun. 1982 May 31;106(2):442–449. doi: 10.1016/0006-291x(82)91130-5. [DOI] [PubMed] [Google Scholar]
- Kuno T., Shirakawa O., Tanaka C. Selective decrease in the affinity of D2 dopamine receptor for agonist induced by islet-activating protein, pertussis toxin, associated with ADP-ribosylation of the specific membrane protein of bovine striatum. Biochem Biophys Res Commun. 1983 Aug 30;115(1):325–330. doi: 10.1016/0006-291x(83)91007-0. [DOI] [PubMed] [Google Scholar]
- Kurose H., Katada T., Amano T., Ui M. Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via alpha-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J Biol Chem. 1983 Apr 25;258(8):4870–4875. [PubMed] [Google Scholar]
- Lad P. M., Glovsky M. M., Smiley P. A., Klempner M., Reisinger D. M., Richards J. H. The beta-adrenergic receptor in the human neutrophil plasma membrane: receptor-cyclase uncoupling is associated with amplified GTP activation. J Immunol. 1984 Mar;132(3):1466–1471. [PubMed] [Google Scholar]
- Mackin W. M., Huang C. K., Becker E. L. The formylpeptide chemotactic receptor on rabbit peritoneal neutrophils. I. Evidence for two binding sites with different affinities. J Immunol. 1982 Oct;129(4):1608–1611. [PubMed] [Google Scholar]
- Mackin W. M., Huang C. K., Bormann B. J., Becker E. L. A simple and rapid assay for measuring radiolabeled ligand binding to purified plasma membranes. Anal Biochem. 1983 Jun;131(2):430–437. doi: 10.1016/0003-2697(83)90195-1. [DOI] [PubMed] [Google Scholar]
- Molski T. F., Naccache P. H., Marsh M. L., Kermode J., Becker E. L., Sha'afi R. I. Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the "G proteins" in calcium mobilization. Biochem Biophys Res Commun. 1984 Oct 30;124(2):644–650. doi: 10.1016/0006-291x(84)91603-6. [DOI] [PubMed] [Google Scholar]
- Moss J., Vaughan M. Activation of adenylate cyclase by choleragen. Annu Rev Biochem. 1979;48:581–600. doi: 10.1146/annurev.bi.48.070179.003053. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Ui M. Islet-activating protein, pertussis toxin, inhibits Ca2+-induced and guanine nucleotide-dependent releases of histamine and arachidonic acid from rat mast cells. FEBS Lett. 1984 Aug 6;173(2):414–418. doi: 10.1016/0014-5793(84)80816-9. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Ui M. Suppression of passive cutaneous anaphylaxis by pertussis toxin, an islet-activating protein, as a result of inhibition of histamine release from mast cells. Biochem Pharmacol. 1983 Nov 15;32(22):3435–3441. doi: 10.1016/0006-2952(83)90373-8. [DOI] [PubMed] [Google Scholar]
- Okajima F., Ui M. ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J Biol Chem. 1984 Nov 25;259(22):13863–13871. [PubMed] [Google Scholar]
- Ringel E. W., Soter N. A., Austen K. F. Localization of histaminase to the specific granule of the human neutrophil. Immunology. 1984 Aug;52(4):649–658. [PMC free article] [PubMed] [Google Scholar]
- Rivkin I., Rosenblatt J., Becker E. L. The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline and cholera toxin. J Immunol. 1975 Oct;115(4):1126–1134. [PubMed] [Google Scholar]
- Sewell W. A., Munoz J. J., Vadas M. A. Enhancement of the intensity, persistence, and passive transfer of delayed-type hypersensitivity lesions by pertussigen in mice. J Exp Med. 1983 Jun 1;157(6):2087–2096. doi: 10.1084/jem.157.6.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showell H. J., Naccache P. H., Sha'afi R. I., Becker E. L. The effects of extracellular K+, Na+ and Ca++ on lysosomal enzyme secretion from polymorphonuclear leukocytes. J Immunol. 1977 Sep;119(3):804–811. [PubMed] [Google Scholar]
- Simchowitz L., Spilberg I., Atkinson J. P. Evidence that the functional responses of human neutrophils occur independently of transient elevations in cyclic AMP levels. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(1):35–47. [PubMed] [Google Scholar]
- Snyderman R. Regulatory mechanisms of a chemoattractant receptor on leukocytes. Fed Proc. 1984 Sep;43(12):2743–2748. [PubMed] [Google Scholar]
- Swanson M. J. A simple multiple chamber apparatus for measuring chemotaxis of polymorphonuclear leukocytes utilizing centrifugation of the chambers before incubation. J Immunol Methods. 1977;16(4):385–390. doi: 10.1016/s0022-1759(97)90008-9. [DOI] [PubMed] [Google Scholar]