Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1499–1507. doi: 10.1083/jcb.100.5.1499

Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization

PMCID: PMC2113884  PMID: 3988797

Abstract

We examined the nature of the tetanus toxin receptor in primary cultures of mouse spinal cord by ligand blotting techniques. Membrane components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled tetanus toxin. The toxin bound only to material at or near the dye front, which was lost when the cells were delipidated before electrophoresis. Gangliosides purified from the lipid extract were separated by thin-layer chromatography and the chromatogram was overlaid with 125I-toxin. The toxin bound to gangliosides corresponding to GD1b and GT1b. Similar results were obtained with brain membranes; thus, gangliosides rather than glycoproteins appear to be the toxin receptors both in vivo and in neuronal cell cultures. To follow the fate of tetanus toxin bound to cultured neurons, we developed an assay to measure cell-surface and internalized toxin. Cells were incubated with tetanus toxin at 0 degree C, washed, and sequentially exposed to antitoxin and 125I-labeled protein A. Using this assay, we found that much of the toxin initially bound to cell surface disappeared rapidly when the temperature was raised to 37 degrees C but not when the cells were kept at 0 degree C. Some of the toxin was internalized and could only be detected by our treating the cells with Triton X-100 before adding anti-toxin. Experiments with 125I-tetanus toxin showed that a substantial amount of the toxin bound at 0 degree C dissociated into the medium upon warming of the cells. Using immunofluorescence, we confirmed that some of the bound toxin was internalized within 15 min and accumulated in discrete structures. These structures did not appear to be lysosomes, as the cell-associated toxin had a long half-life and 90% of the radioactivity released into the medium was precipitated by trichloroacetic acid. The rapid internalization of tetanus toxin into a subcellular compartment where it escapes degradation may be important for its mechanism of action.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bizzini B. Tetanus toxin. Microbiol Rev. 1979 Jun;43(2):224–240. doi: 10.1128/mr.43.2.224-240.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boquet P., Duflot E. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7614–7618. doi: 10.1073/pnas.79.24.7614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenneman D. E., Neale E. A., Habig W. H., Bowers L. M., Nelson P. G. Developmental and neurochemical specificity of neuronal deficits produced by electrical impulse blockade in dissociated spinal cord cultures. Brain Res. 1983 Jul;285(1):13–27. doi: 10.1016/0165-3806(83)90104-9. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  5. Chang P. P., Fishman P. H., Ohtomo N., Moss J. Degradation of choleragen bound to cultured human fibroblasts and mouse neuroblastoma cells. J Biol Chem. 1983 Jan 10;258(1):426–430. [PubMed] [Google Scholar]
  6. Critchley D. R., Magnani J. L., Fishman P. H. Interaction of cholera toxin with rat intestinal brush border membranes. Relative roles of gangliosides and galactoproteins as toxin receptors. J Biol Chem. 1981 Aug 25;256(16):8724–8731. [PubMed] [Google Scholar]
  7. Critchley D. R., Streuli C. H., Kellie S., Ansell S., Patel B. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity. Biochem J. 1982 Apr 15;204(1):209–219. doi: 10.1042/bj2040209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dautry-Varsat A., Ciechanover A., Lodish H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. doi: 10.1073/pnas.80.8.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dimpfel W., Habermann E. Binding characteristics of 125I-labelled tetanus toxin to primary tissue cultures from mouse embryonic CNS. J Neurochem. 1977 Dec;29(6):1111–1120. doi: 10.1111/j.1471-4159.1977.tb06516.x. [DOI] [PubMed] [Google Scholar]
  10. Fishman P. H. Internalization and degradation of cholera toxin by cultured cells: relationship to toxin action. J Cell Biol. 1982 Jun;93(3):860–865. doi: 10.1083/jcb.93.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fishman P. H. Mechanism of action of cholera toxin: studies on the lag period. J Membr Biol. 1980;54(1):61–72. doi: 10.1007/BF01875377. [DOI] [PubMed] [Google Scholar]
  12. Fishman P. H., Moss J., Manganiello V. C. Synthesis and uptake of gangliosides by choleragen-responsive human fibroblasts. Biochemistry. 1977 May 3;16(9):1871–1875. doi: 10.1021/bi00628a017. [DOI] [PubMed] [Google Scholar]
  13. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  14. Gonatas N. K., Stieber A., Gonatas J., Mommoi T., Fishman P. H. Endocytosis of exogenous GM1 ganglioside and cholera toxin by neuroblastoma cells. Mol Cell Biol. 1983 Jan;3(1):91–101. doi: 10.1128/mcb.3.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harford J., Bridges K., Ashwell G., Klausner R. D. Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes. A pH-mediated nonlysosomal event. J Biol Chem. 1983 Mar 10;258(5):3191–3197. [PubMed] [Google Scholar]
  16. Higashida H., Sugimoto N., Ozutsumi K., Miki N., Matsuda M. Tetanus toxin: a rapid and selective blockade of the calcium, but not sodium, component of action potentials in cultured neuroblastoma N1E-115 cells. Brain Res. 1983 Nov 21;279(1-2):363–368. doi: 10.1016/0006-8993(83)90211-1. [DOI] [PubMed] [Google Scholar]
  17. Holmgren J., Elwing H., Fredman P., Svennerholm L. Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus-toxin receptor. Eur J Biochem. 1980 May;106(2):371–379. doi: 10.1111/j.1432-1033.1980.tb04583.x. [DOI] [PubMed] [Google Scholar]
  18. Joseph K. C., Stieber A., Gonatas N. K. Endocytosis of cholera toxin in GERL-like structures of murine neuroblastoma cells pretreated with GM1 ganglioside. Cholera toxin internalization into Neuroblastoma GERL. J Cell Biol. 1979 Jun;81(3):543–554. doi: 10.1083/jcb.81.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kassis S., Hagmann J., Fishman P. H., Chang P. P., Moss J. Mechanism of action of cholera toxin on intact cells. Generation of A1 peptide and activation of adenylate cyclase. J Biol Chem. 1982 Oct 25;257(20):12148–12152. [PubMed] [Google Scholar]
  20. Kenimer J. G., Habig W. H., Hardegree M. C. Monoclonal antibodies as probes of tetanus toxin structure and function. Infect Immun. 1983 Dec;42(3):942–948. doi: 10.1128/iai.42.3.942-948.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klausner R. D., Ashwell G., van Renswoude J., Harford J. B., Bridges K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2263–2266. doi: 10.1073/pnas.80.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Magnani J. L., Nilsson B., Brockhaus M., Zopf D., Steplewski Z., Koprowski H., Ginsburg V. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem. 1982 Dec 10;257(23):14365–14369. [PubMed] [Google Scholar]
  23. Mellanby J., Green J. How does tetanus toxin act? Neuroscience. 1981;6(3):281–300. doi: 10.1016/0306-4522(81)90123-8. [DOI] [PubMed] [Google Scholar]
  24. Montesano R., Roth J., Robert A., Orci L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature. 1982 Apr 15;296(5858):651–653. doi: 10.1038/296651a0. [DOI] [PubMed] [Google Scholar]
  25. Moss J., Vaughan M. Activation of adenylate cyclase by choleragen. Annu Rev Biochem. 1979;48:581–600. doi: 10.1146/annurev.bi.48.070179.003053. [DOI] [PubMed] [Google Scholar]
  26. Pastan I. H., Willingham M. C. Journey to the center of the cell: role of the receptosome. Science. 1981 Oct 30;214(4520):504–509. doi: 10.1126/science.6170111. [DOI] [PubMed] [Google Scholar]
  27. Pastan I. H., Willingham M. C. Receptor-mediated endocytosis of hormones in cultured cells. Annu Rev Physiol. 1981;43:239–250. doi: 10.1146/annurev.ph.43.030181.001323. [DOI] [PubMed] [Google Scholar]
  28. Ransom B. R., Neale E., Henkart M., Bullock P. N., Nelson P. G. Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologic properties. J Neurophysiol. 1977 Sep;40(5):1132–1150. doi: 10.1152/jn.1977.40.5.1132. [DOI] [PubMed] [Google Scholar]
  29. Robinson J. P., Hash J. H. A review of the molecular structure of tetanus toxin. Mol Cell Biochem. 1982 Oct 1;48(1):33–44. doi: 10.1007/BF00214820. [DOI] [PubMed] [Google Scholar]
  30. Rogers T. B., Snyder S. H. High affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem. 1981 Mar 10;256(5):2402–2407. [PubMed] [Google Scholar]
  31. Schwab M. E., Suda K., Thoenen H. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol. 1979 Sep;82(3):798–810. doi: 10.1083/jcb.82.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wellhöner N. H. Tetanus neurotoxin. Rev Physiol Biochem Pharmacol. 1982;93:1–68. doi: 10.1007/BFb0032668. [DOI] [PubMed] [Google Scholar]
  33. Yavin E. Gangliosides mediate association of tetanus toxin with neural cells in culture. Arch Biochem Biophys. 1984 Apr;230(1):129–137. doi: 10.1016/0003-9861(84)90093-6. [DOI] [PubMed] [Google Scholar]
  34. Yavin E., Habig W. H. Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition. J Neurochem. 1984 May;42(5):1313–1320. doi: 10.1111/j.1471-4159.1984.tb02789.x. [DOI] [PubMed] [Google Scholar]
  35. Yavin E., Yavin Z., Kohn L. D. Temperature-mediated interaction of tetanus toxin with cerebral neuron cultures: characterization of a neuraminidase-insensitive toxin-receptor complex. J Neurochem. 1983 May;40(5):1212–1219. doi: 10.1111/j.1471-4159.1983.tb13559.x. [DOI] [PubMed] [Google Scholar]
  36. Zimmerman J. M., Piffaretti J. C. Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells. Analysis by immunofluorescence. Naunyn Schmiedebergs Arch Pharmacol. 1977 Feb;296(3):271–277. doi: 10.1007/BF00498693. [DOI] [PubMed] [Google Scholar]
  37. an der Lan B., Habig W. H., Hardegree M. C., Chrambach A. Heterogeneity of 125I-labeled tetanus toxin in isoelectric focusing on polyacrylamide gel and polyacrylamide gel electrophoresis. Arch Biochem Biophys. 1980 Mar;200(1):206–215. doi: 10.1016/0003-9861(80)90347-1. [DOI] [PubMed] [Google Scholar]
  38. van Heyningen S. Tetanus toxin. Pharmacol Ther. 1980;11(1):141–157. doi: 10.1016/0163-7258(80)90070-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES