Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1522–1527. doi: 10.1083/jcb.100.5.1522

Source and sinks for the calcium released during fertilization of single sea urchin eggs

PMCID: PMC2113887  PMID: 3988799

Abstract

The source and sinks for the intracellular calcium released during fertilization were examined in single eggs from the sea urchin, Arbacia punctulata. Single eggs were microinjected with the calcium photoprotein, aequorin. The calcium-aequorin luminescence was measured with a microscope-photomultiplier or observed with a microscope-image intensifier-video system. In the normal egg a propagated release has been observed. The source of the calcium was investigated in the organelle-stratified centrifuged egg and by the use of mitochondrial uncouplers. In the organelle-stratified centrifuged egg, the calcium- aequorin luminescence was found to originate from the clear zone. The principal constituent of the clear zone is the endoplasmic reticulum. Other potential sources of calcium are the mitochondria. Their contribution to the calcium transient was investigated by exposure of aequorin-injected eggs to mitochondrial uncouplers either before or after fertilization. There was no calcium released from the mitochondria before fertilization. A very large calcium store was released from the mitochondria after fertilization. Interestingly, eggs fertilized in the presence of uncouplers showed no increase in the calcium-aequorin luminescence over untreated eggs. Apparently, in the absence of mitochondrial uptake, other sinks for calcium with affinity and capacity similar to the mitochondria exist, but their nature is unknown. We suggest that the endoplasmic reticulum is the source of the intracellular calcium released upon fertilization and that the mitochondria are the principal sink. The results are discussed with regard to the metabolic activation of the egg.

Full Text

The Full Text of this article is available as a PDF (767.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. A cytological study of the centrifuged whole, half, and quarter eggs of the sea urchin, Arbacia punctulata. J Cell Biol. 1970 Dec;47(3):711–733. doi: 10.1083/jcb.47.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beatrice M. C., Palmer J. W., Pfeiffer D. R. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. J Biol Chem. 1980 Sep 25;255(18):8663–8671. [PubMed] [Google Scholar]
  3. Beaven M. A., Moore J. P., Smith G. A., Hesketh T. R., Metcalfe J. C. The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J Biol Chem. 1984 Jun 10;259(11):7137–7142. [PubMed] [Google Scholar]
  4. Becker G. L., Fiskum G., Lehninger A. L. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J Biol Chem. 1980 Oct 10;255(19):9009–9012. [PubMed] [Google Scholar]
  5. Blinks J. R., Prendergast F. G., Allen D. G. Photoproteins as biological calcium indicators. Pharmacol Rev. 1976 Mar;28(1):1–93. [PubMed] [Google Scholar]
  6. Burgess G. M., McKinney J. S., Fabiato A., Leslie B. A., Putney J. W., Jr Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem. 1983 Dec 25;258(24):15336–15345. [PubMed] [Google Scholar]
  7. CHANCE B., THORELL B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem. 1959 Nov;234:3044–3050. [PubMed] [Google Scholar]
  8. Cardasis C. A., Schuel H., Herman L. Ultrastructural localization of calcium in unfertilized sea-urchin eggs. J Cell Sci. 1978 Jun;31:101–115. doi: 10.1242/jcs.31.1.101. [DOI] [PubMed] [Google Scholar]
  9. Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eisen A., Kiehart D. P., Wieland S. J., Reynolds G. T. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J Cell Biol. 1984 Nov;99(5):1647–1654. doi: 10.1083/jcb.99.5.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Epel D. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr Top Dev Biol. 1978;12:185–246. doi: 10.1016/s0070-2153(08)60597-9. [DOI] [PubMed] [Google Scholar]
  12. Fiskum G., Lehninger A. L. The mechanisms and regulation of mitochondrial Ca2+ transport. Fed Proc. 1980 May 15;39(7):2432–2436. [PubMed] [Google Scholar]
  13. Gilkey J. C., Jaffe L. F., Ridgway E. B., Reynolds G. T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978 Feb;76(2):448–466. doi: 10.1083/jcb.76.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HORWITZ B. A. RATES OF OXYGEN CONSUMPTION OF FERTILIZED AND UNFERTILIZED ASTERIAS, ARBACIA, AND SPISULA EGGS. Exp Cell Res. 1965 Jun;38:620–625. doi: 10.1016/0014-4827(65)90385-x. [DOI] [PubMed] [Google Scholar]
  15. Innis M. A., Beers T. R., Craig S. P. Mitochondrial regulation in sea urchins. I. Mitochondrial ultrastructure transformations and changes in the ADP:ATP ratio at fertilization. Exp Cell Res. 1976 Mar 1;98(1):47–56. doi: 10.1016/0014-4827(76)90461-4. [DOI] [PubMed] [Google Scholar]
  16. Inoue H., Yoshioka T. Comparison of Ca2+ uptake characteristics of microsomal fractions isolated from unfertilized and fertilized sea urchin eggs. Exp Cell Res. 1982 Aug;140(2):283–288. doi: 10.1016/0014-4827(82)90116-1. [DOI] [PubMed] [Google Scholar]
  17. Joseph S. K., Coll K. E., Cooper R. H., Marks J. S., Williamson J. R. Mechanisms underlying calcium homeostasis in isolated hepatocytes. J Biol Chem. 1983 Jan 25;258(2):731–741. [PubMed] [Google Scholar]
  18. Kiehart D. P. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system. J Cell Biol. 1981 Mar;88(3):604–617. doi: 10.1083/jcb.88.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Majerus P. W., Neufeld E. J., Wilson D. B. Production of phosphoinositide-derived messengers. Cell. 1984 Jul;37(3):701–703. doi: 10.1016/0092-8674(84)90405-7. [DOI] [PubMed] [Google Scholar]
  20. McCormack J. G., Denton R. M. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J. 1980 Jul 15;190(1):95–105. doi: 10.1042/bj1900095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michell R. H., Jafferji S. S., Jones L. M. The possible involvement of phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell-surface calcium gates. Adv Exp Med Biol. 1977;83:447–464. doi: 10.1007/978-1-4684-3276-3_41. [DOI] [PubMed] [Google Scholar]
  22. Miller D. S., Lau Y. T., Horowitz S. B. Artifacts caused by cell microinjection. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1426–1430. doi: 10.1073/pnas.81.5.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prentki M., Biden T. J., Janjic D., Irvine R. F., Berridge M. J., Wollheim C. B. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature. 1984 Jun 7;309(5968):562–564. doi: 10.1038/309562a0. [DOI] [PubMed] [Google Scholar]
  24. Reynolds G. T. Applications of image intensification to low level fluorescence studies of living cells. Microsc Acta. 1980 Mar;83(1):55–62. [PubMed] [Google Scholar]
  25. Reynolds G. T. Image intensification applied to biological problems. Q Rev Biophys. 1972 Aug;5(3):295–347. doi: 10.1017/s0033583500000974. [DOI] [PubMed] [Google Scholar]
  26. Ronning S. A., Heatley G. A., Martin T. F. Thyrotropin-releasing hormone mobilizes Ca2+ from endoplasmic reticulum and mitochondria of GH3 pituitary cells: characterization of cellular Ca2+ pools by a method based on digitonin permeabilization. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6294–6298. doi: 10.1073/pnas.79.20.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SHIMOMURA O., JOHNSON F. H., SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962 Jun;59:223–239. doi: 10.1002/jcp.1030590302. [DOI] [PubMed] [Google Scholar]
  28. Shimomura O., Shimomura A. EDTA-binding and acylation of the Ca2+-sensitive photoprotein aequorin. FEBS Lett. 1982 Feb 22;138(2):201–204. doi: 10.1016/0014-5793(82)80441-9. [DOI] [PubMed] [Google Scholar]
  29. Silver R. B., Cole R. D., Cande W. Z. Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 1980 Feb;19(2):505–516. doi: 10.1016/0092-8674(80)90525-5. [DOI] [PubMed] [Google Scholar]
  30. Somlyo A. P. Cell physiology: cellular site of calcium regulation. Nature. 1984 Jun 7;309(5968):516–517. doi: 10.1038/309516b0. [DOI] [PubMed] [Google Scholar]
  31. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
  33. Turner P. R., Sheetz M. P., Jaffe L. A. Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature. 1984 Aug 2;310(5976):414–415. doi: 10.1038/310414a0. [DOI] [PubMed] [Google Scholar]
  34. Walz B. Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca accumulation. J Cell Biol. 1982 Jun;93(3):839–848. doi: 10.1083/jcb.93.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walz B. Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. II. Its properties as revealed by microphotometric measurements. J Cell Biol. 1982 Jun;93(3):849–859. doi: 10.1083/jcb.93.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zucker R. S., Steinhardt R. A., Winkler M. M. Intracellular calcium release and the mechanisms of parthenogenetic activation of the sea urchin egg. Dev Biol. 1978 Aug;65(2):285–295. doi: 10.1016/0012-1606(78)90028-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES