Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 May 1;100(5):1379–1386. doi: 10.1083/jcb.100.5.1379

Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin

PMCID: PMC2113893  PMID: 3886665

Abstract

In these studies we have compared the relative amounts and isoforms of tropomyosin in capillary and postcapillary venule pericytes, endothelial cells, and vascular smooth muscle cells in four rat microvascular beds: heart, diaphragm, pancreas, and the intestinal mucosa. The results, obtained by in situ immunoperoxidase localization, indicate that (a) tropomyosin is present in capillary and postcapillary venule pericytes in relatively high concentration; (b) the tropomyosin content of pericytes appears to be somewhat lower than in vascular smooth muscle cells but higher than in endothelia and other vessel- associated cells; and (c) pericytes, unlike endothelia and other nonmuscle cells, contain detectable levels of tropomyosin immunologically related to the smooth muscle isoform. These results and our previous findings concerning the presence of a cyclic GMP-dependent protein kinase (Joyce, N., P. DeCamilli, and J. Boyles, 1984, Microvasc. Res. 28:206-219) in pericytes demonstrate that these cells contain significant amounts of at least two proteins important for contraction regulation. Taken together, the evidence suggests that pericytes are contractile elements related to vascular smooth muscle cells, possibly involved, as are the latter, in the regulation of blood flow through the microvasculature.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chacko S. Effects of phosphorylation, calcium ion, and tropomyosin on actin-activated adenosine 5'-triphosphatase activity of mammalian smooth muscle myosin. Biochemistry. 1981 Feb 17;20(4):702–707. doi: 10.1021/bi00507a005. [DOI] [PubMed] [Google Scholar]
  3. Cohen D. M., Murphy R. A. Differences in cellular contractile protein contents among porcine smooth muscles: evidence for variation in the contractile system. J Gen Physiol. 1978 Sep;72(3):369–380. doi: 10.1085/jgp.72.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cummins P., Perry S. V. Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle. Biochem J. 1974 Jul;141(1):43–49. doi: 10.1042/bj1410043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cummins P., Perry S. V. The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J. 1973 Aug;133(4):765–777. doi: 10.1042/bj1330765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Côté G. P., Lewis W. G., Pato M. D., Smillie L. B. Platelet tropomyosin: lack of binding to skeletal muscle troponin and correlation with sequence. FEBS Lett. 1978 Oct 1;94(1):131–135. doi: 10.1016/0014-5793(78)80922-3. [DOI] [PubMed] [Google Scholar]
  7. Côté G. P., Smillie L. B. The interaction of equine platelet tropomyosin with skeletal muscle actin. J Biol Chem. 1981 Jul 25;256(14):7257–7261. [PubMed] [Google Scholar]
  8. Côté G., Lewis W. G., Smillie L. B. Non-polymerizability of platelet tropomyosin and its NH2- and COOH-terminal sequences. FEBS Lett. 1978 Jul 15;91(2):237–241. doi: 10.1016/0014-5793(78)81181-8. [DOI] [PubMed] [Google Scholar]
  9. Fine R. E., Blitz A. L. A chemical comparison of tropomyosins from muscle and non-muscle tissues. J Mol Biol. 1975 Jul 5;95(3):447–454. doi: 10.1016/0022-2836(75)90202-8. [DOI] [PubMed] [Google Scholar]
  10. Forbes M. S., Rennels M. L., Nelson E. Ultrastructure of pericytes in mouse heart. Am J Anat. 1977 May;149(1):47–70. doi: 10.1002/aja.1001490105. [DOI] [PubMed] [Google Scholar]
  11. Gruetter C. A., Gruetter D. Y., Lyon J. E., Kadowitz P. J., Ignarro L. J. Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther. 1981 Oct;219(1):181–186. [PubMed] [Google Scholar]
  12. Hodges R. S., Smillie L. B. Chemical evidence for chain heterogeneity in rabbit muscle tropomyosin. Biochem Biophys Res Commun. 1970 Nov 25;41(4):987–994. doi: 10.1016/0006-291x(70)90182-8. [DOI] [PubMed] [Google Scholar]
  13. Izant J. G., Lazarides E. Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1450–1454. doi: 10.1073/pnas.74.4.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joyce N. C., DeCamilli P., Boyles J. Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res. 1984 Sep;28(2):206–219. doi: 10.1016/0026-2862(84)90018-9. [DOI] [PubMed] [Google Scholar]
  15. Joyce N. C., Haire M. F., Palade G. E. Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol. 1985 May;100(5):1387–1395. doi: 10.1083/jcb.100.5.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KUWABARA T., COGAN D. G. Studies of retinal vascular patterns. I. Normal architecture. Arch Ophthalmol. 1960 Dec;64:904–911. doi: 10.1001/archopht.1960.01840010906012. [DOI] [PubMed] [Google Scholar]
  17. Le Beux Y. J., Willemot J. Actin- and myosin-like filaments in rat brain pericytes. Anat Rec. 1978 Apr;190(4):811–826. doi: 10.1002/ar.1091900404. [DOI] [PubMed] [Google Scholar]
  18. Lewis W. G., Cote G. P., Mak A. S., Smillie L. B. Amino acid sequence of equine platelet tropomyosin. Correlation with interaction properties. FEBS Lett. 1983 Jun 13;156(2):269–273. doi: 10.1016/0014-5793(83)80511-0. [DOI] [PubMed] [Google Scholar]
  19. Marsh M. N., Trier J. S. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. I. Structural features. Gastroenterology. 1974 Oct;67(4):622–635. [PubMed] [Google Scholar]
  20. Mazanet R., Franzini-Armstrong C. Scanning electron microscopy of pericytes in rat red muscle. Microvasc Res. 1982 May;23(3):361–369. doi: 10.1016/s0026-2862(82)80008-3. [DOI] [PubMed] [Google Scholar]
  21. Onji T., Shibata N. Tropomyosin enhances actomyosin ATPase activity in platelet. Biochem Biophys Res Commun. 1982 Dec 15;109(3):697–703. doi: 10.1016/0006-291x(82)91996-9. [DOI] [PubMed] [Google Scholar]
  22. Pepe F. A. Some aspects of the structural organization of the myofibril as revealed by antibody--staining methods. J Cell Biol. 1966 Mar;28(3):505–525. doi: 10.1083/jcb.28.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rapoport R. M., Draznin M. B., Murad F. Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo cyclic GMP. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6470–6474. doi: 10.1073/pnas.79.21.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rhodin J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res. 1968 Dec;25(5):452–500. doi: 10.1016/s0022-5320(68)80098-x. [DOI] [PubMed] [Google Scholar]
  25. Schultz K., Schultz K., Schultz G. Sodium nitroprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens. Nature. 1977 Feb 24;265(5596):750–751. doi: 10.1038/265750a0. [DOI] [PubMed] [Google Scholar]
  26. Sobieszek A. Steady-state kinetic studies on the actin activation of skeletal muscle heavy meromyosin subfragments. Effects of skeletal, smooth and non-muscle tropomyosins. J Mol Biol. 1982 May 15;157(2):275–286. doi: 10.1016/0022-2836(82)90234-0. [DOI] [PubMed] [Google Scholar]
  27. Tilton R. G., Kilo C., Williamson J. R. Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res. 1979 Nov;18(3):325–335. doi: 10.1016/0026-2862(79)90041-4. [DOI] [PubMed] [Google Scholar]
  28. Vegge T. A study of the ultrastructure of the small iris vessels in the vervet monkey (Ceropithecus aethiops). Z Zellforsch Mikrosk Anat. 1972;123(2):195–208. doi: 10.1007/BF02583473. [DOI] [PubMed] [Google Scholar]
  29. Wallow I. H., Burnside B. Actin filaments in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci. 1980 Dec;19(12):1433–1441. [PubMed] [Google Scholar]
  30. Weibel E. R. On pericytes, particularly their existence on lung capillaries. Microvasc Res. 1974 Sep;8(2):218–235. doi: 10.1016/0026-2862(74)90096-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES