Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Oct 1;101(4):1481–1486. doi: 10.1083/jcb.101.4.1481

The effects of hepatocyte stimulating factor on fibrinogen biosynthesis in hepatocyte monolayers

PMCID: PMC2113908  PMID: 3900090

Abstract

The biosynthesis of fibrinogen increased at least eightfold in primary hepatocytes when incubated in the presence of monocyte/macrophage- derived hepatocyte stimulating factor (HSF). The large increase in fibrinogen production is due to increased availability of the mRNAs for the protein since cytodot analysis of cellular RNA showed a 10-12-fold increase in each of the fibrinogen mRNAs. Pulse-chase experiments showed that the time for fibrinogen synthesis, assembly, and secretion was 40-50 min for both control and stimulating conditions. This indicates that the increased production was due principally to the presence of greater amounts of fibrinogen mRNA rather than translation or secretion-specific events. Three lines of evidence indicate that the increase in fibrinogen production was due to HSF effects on transcription: (a) analysis of cytoplasmic levels of each of the fibrinogen mRNAs showed that all three increased at the same rate and to the same extent, demonstrating that HSF affects the three gene products coordinately; (b) Northern gel analysis of cytoplasmic RNA isolated after very brief exposures to HSF showed increases in a large molecular weight fibrinogen RNA precursor; and (c) actinomycin D blocked the HSF-stimulated increase in fibrinogen mRNA species. Furthermore, experiments in which protein synthesis was inhibited by cycloheximide failed to inhibit the increase in fibrinogen mRNAs, indicating new protein synthesis is not required for the HSF stimulation of fibrinogen mRNA. These results are consistent with our hypothesis that HSF is exerting its control of fibrinogen at the level of gene transcription.

Full Text

The Full Text of this article is available as a PDF (816.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNHART M. I., FORMAN W. B. THE CELLULAR LOCALIZATION OF FIBRINOGEN AS REVEALED BY THE FLUORESCENT ANTIBODY TECHNIQUE. Vox Sang. 1963 Jul-Aug;8:461–473. doi: 10.1111/j.1423-0410.1963.tb04169.x. [DOI] [PubMed] [Google Scholar]
  2. Baumann H., Jahreis G. P., Sauder D. N., Koj A. Human keratinocytes and monocytes release factors which regulate the synthesis of major acute phase plasma proteins in hepatic cells from man, rat, and mouse. J Biol Chem. 1984 Jun 10;259(11):7331–7342. [PubMed] [Google Scholar]
  3. Bouma H., 3rd, Fuller F. M. Partial chemical characterization of rat fibrinogen. J Biol Chem. 1975 Jun 25;250(12):4678–4683. [PubMed] [Google Scholar]
  4. Crabtree G. R., Kant J. A. Molecular cloning of cDNA for the alpha, beta, and gamma chains of rat fibrinogen. A family of coordinately regulated genes. J Biol Chem. 1981 Sep 25;256(18):9718–9723. [PubMed] [Google Scholar]
  5. Deeley R. G., Gordon J. I., Burns A. T., Mullinix K. P., Binastein M., Goldberg R. F. Primary activation of the vitellogenin gene in the rooster. J Biol Chem. 1977 Nov 25;252(22):8310–8319. [PubMed] [Google Scholar]
  6. Fowlkes D. M., Mullis N. T., Comeau C. M., Crabtree G. R. Potential basis for regulation of the coordinately expressed fibrinogen genes: homology in the 5' flanking regions. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2313–2316. doi: 10.1073/pnas.81.8.2313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuller G. M., Ritchie D. G. A regulatory pathway for fibrinogen biosynthesis involving an indirect feedback loop. Ann N Y Acad Sci. 1982;389:308–322. doi: 10.1111/j.1749-6632.1982.tb22146.x. [DOI] [PubMed] [Google Scholar]
  8. Goldberg I. H., Friedman P. A. Antibiotics and nucleic acids. Annu Rev Biochem. 1971;40:775–810. doi: 10.1146/annurev.bi.40.070171.004015. [DOI] [PubMed] [Google Scholar]
  9. Kampschmidt R. F., Pulliam L. A., Upchurch H. F. The activity of partially purified leukocytic endogenous mediator in endotoxin-resistant C3H/HeJ mice. J Lab Clin Med. 1980 Apr;95(4):616–623. [PubMed] [Google Scholar]
  10. Kampschmidt R. F., Upchurch H. F. Neutrophil release after injections of endotoxin or leukocytic endogenous mediator into rats. J Reticuloendothel Soc. 1980 Aug;28(2):191–201. [PubMed] [Google Scholar]
  11. Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci. 1982;389:39–48. doi: 10.1111/j.1749-6632.1982.tb22124.x. [DOI] [PubMed] [Google Scholar]
  12. Kwan S. W., Fuller G. M., Krautter M. A., van Baval J. H., Goldblum R. M. Quantitation of cytoplasmic fibrinogen in rat liver cells. Anal Biochem. 1977 Dec;83(2):589–596. doi: 10.1016/0003-2697(77)90062-8. [DOI] [PubMed] [Google Scholar]
  13. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  14. MILLER L. L., BALE W. F. Synthesis of all plasma protein fractions except gamma globulins by the liver; the use of zone electrophoresis and lysine-epsilon-C14 to define the plasma proteins synthesized by the isolated perfused liver. J Exp Med. 1954 Feb;99(2):125–132. doi: 10.1084/jem.99.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murdoch G. H., Franco R., Evans R. M., Rosenfeld M. G. Polypeptide hormone regulation of gene expression. Thyrotropin-releasing hormone rapidly stimulates both transcription of the prolactin gene and the phosphorylation of a specific nuclear protein. J Biol Chem. 1983 Dec 25;258(24):15329–15335. [PubMed] [Google Scholar]
  16. Nickerson J. M., Fuller G. M. In vitro synthesis of rat fibrinogen: identification of preA alpha, preB beta, and pre gamma polypeptides. Proc Natl Acad Sci U S A. 1981 Jan;78(1):303–307. doi: 10.1073/pnas.78.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nickerson J. M., Fuller G. M. Modification of fibrinogen chains during synthesis: glycosylation of B beta and gamma chains. Biochemistry. 1981 May 12;20(10):2818–2821. doi: 10.1021/bi00513a017. [DOI] [PubMed] [Google Scholar]
  18. Princen H. M., Moshage H. J., de Haard H. J., van Gemert P. J., Yap S. H. The influence of glucocorticoid on the fibrinogen messenger RNA content of rat liver in vivo and in hepatocyte suspension culture. Biochem J. 1984 Jun 15;220(3):631–637. doi: 10.1042/bj2200631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ritchie D. G., Fuller G. M. An in vitro bioassay for leukocytic endogenous mediator(s) using cultured rat hepatocytes. Inflammation. 1981 Dec;5(4):275–287. doi: 10.1007/BF00911093. [DOI] [PubMed] [Google Scholar]
  20. Ritchie D. G., Fuller G. M. Hepatocyte-stimulating factor: a monocyte-derived acute-phase regulatory protein. Ann N Y Acad Sci. 1983 Jun 27;408:490–502. doi: 10.1111/j.1749-6632.1983.tb23268.x. [DOI] [PubMed] [Google Scholar]
  21. Ritchie D. G., Levy B. A., Adams M. A., Fuller G. M. Regulation of fibrinogen synthesis by plasmin-derived fragments of fibrinogen and fibrin: an indirect feedback pathway. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1530–1534. doi: 10.1073/pnas.79.5.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ritchie D. G., Nickerson J. M., Fuller G. M. Two simple programs for the analysis of data from enzyme-linked immunosorbent (ELISA) assays on a programmable desk-top calculator. Anal Biochem. 1981 Jan 15;110(2):281–290. doi: 10.1016/0003-2697(81)90193-7. [DOI] [PubMed] [Google Scholar]
  23. Rupp R. G., Fuller G. M. Comparison of albumin and fibrinogen biosynthesis in stimulated rats and cultured fetal rat hepatocytes. Biochem Biophys Res Commun. 1979 May 14;88(1):327–334. doi: 10.1016/0006-291x(79)91733-9. [DOI] [PubMed] [Google Scholar]
  24. Sanders K. D., Fuller G. M. Kupffer cell regulation of fibrinogen synthesis in hepatocytes. Thromb Res. 1983 Oct 15;32(2):133–145. doi: 10.1016/0049-3848(83)90025-7. [DOI] [PubMed] [Google Scholar]
  25. Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
  26. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vannice J. L., Taylor J. M., Ringold G. M. Glucocorticoid-mediated induction of alpha 1-acid glycoprotein: evidence for hormone-regulated RNA processing. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4241–4245. doi: 10.1073/pnas.81.14.4241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
  29. Woloski B. M., Fuller G. M. Identification and partial characterization of hepatocyte-stimulating factor from leukemia cell lines: comparison with interleukin 1. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1443–1447. doi: 10.1073/pnas.82.5.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yu S., Sher B., Kudryk B., Redman C. M. Intracellular assembly of human fibrinogen. J Biol Chem. 1983 Nov 25;258(22):13407–13410. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES