Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Oct 1;101(4):1332–1340. doi: 10.1083/jcb.101.4.1332

Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers

PMCID: PMC2113909  PMID: 2413041

Abstract

The delivery of neurofilaments via axonal transport has been proposed as an important mechanism for regulating axonal caliber. If this hypothesis is correct, alterations in axonal caliber should appear coincident with changes in the delivery of neurofilaments to the axon. The purpose of this study was to determine whether alterations in the caliber of axons in the proximal stumps of transected motor fibers precede, coincide with, or occur substantially later than changes in the delivery of neurofilaments via axonal transport. Between 3 d and 12 wk after crushing the sciatic nerves of 7-wk-old rats, lumbar motor neurons were labeled by the intraspinal injection of [35S]methionine. In neurons labeled between 3 d and 6 wk after axotomy, the relative amount of neurofilament protein in the slow component, as reflected by the ratio of the radioactivities of the 145-kD neurofilament protein to tubulin, was reduced to 30-40% of the control value. Moreover, as determined by immunoreactivity on blots, the amounts of neurofilament protein and tubulin in these nerve fibers were reduced fourfold and twofold, respectively. Thus, changes in the ratio of labeled neurofilament protein to tubulin correlated with comparable changes in the quantities of these proteins in nerve fibers. This decrease in the quantity of neurofilament proteins delivered to axons coincided temporally with reductions in axonal caliber. After regeneration occurred, the delivery of neurofilament proteins returned to pre- axotomy levels (i.e., 8 wk after axotomy), and caliber was restored with resumption of normal age-related radial growth of these axons. Thus, changes in axonal caliber coincided temporally with alterations in the delivery of neurofilament proteins. These results suggest that the majority of neurofilaments in these motor fibers continuously move in the anterograde direction as part of the slow component of axonal transport and that the transport of neurofilaments plays an important role in regulating the caliber of these axons.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AITKEN J. T., THOMAS P. K. Retrograde changes in fibre size following nerve section. J Anat. 1962 Jan;96:121–129. [PMC free article] [PubMed] [Google Scholar]
  2. Black M. M., Lasek R. J. Slow components of axonal transport: two cytoskeletal networks. J Cell Biol. 1980 Aug;86(2):616–623. doi: 10.1083/jcb.86.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRAGG B. G., THOMAS P. K. Changes in conduction velocity and fibre size proximal to peripheral nerve lesions. J Physiol. 1961 Jul;157:315–327. doi: 10.1113/jphysiol.1961.sp006724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlson J., Lais A. C., Dyck P. J. Axonal atrophy from permanent peripheral axotomy in adult cat. J Neuropathol Exp Neurol. 1979 Nov;38(6):579–585. doi: 10.1097/00005072-197911000-00002. [DOI] [PubMed] [Google Scholar]
  5. Chiu F. C., Norton W. T. Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: dye-binding characteristics and amino acid compositions. J Neurochem. 1982 Nov;39(5):1252–1260. doi: 10.1111/j.1471-4159.1982.tb12562.x. [DOI] [PubMed] [Google Scholar]
  6. Friede R. L., Martinez A. J. Analysis of the process of sheath expansion in swollen nerve fibers. Brain Res. 1970 Apr 14;19(2):165–182. doi: 10.1016/0006-8993(70)90432-4. [DOI] [PubMed] [Google Scholar]
  7. Friede R. L., Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec. 1970 Aug;167(4):379–387. doi: 10.1002/ar.1091670402. [DOI] [PubMed] [Google Scholar]
  8. Goldstein M. E., Sternberger L. A., Sternberger N. H. Microheterogeneity ("neurotypy") of neurofilament proteins. Proc Natl Acad Sci U S A. 1983 May;80(10):3101–3105. doi: 10.1073/pnas.80.10.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffin J. W., Anthony D. C., Fahnestock K. E., Hoffman P. N., Graham D. G. 3,4-Dimethyl-2,5-hexanedione impairs the axonal transport of neurofilament proteins. J Neurosci. 1984 Jun;4(6):1516–1526. doi: 10.1523/JNEUROSCI.04-06-01516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gutmann E., Sanders F. K. Recovery of fibre numbers and diameters in the regeneration of peripheral nerves. J Physiol. 1943 Mar 25;101(4):489–518. doi: 10.1113/jphysiol.1943.sp004002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffman P. N., Griffin J. W., Price D. L. Control of axonal caliber by neurofilament transport. J Cell Biol. 1984 Aug;99(2):705–714. doi: 10.1083/jcb.99.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman P. N., Lasek R. J. Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res. 1980 Dec 8;202(2):317–333. doi: 10.1016/0006-8993(80)90144-4. [DOI] [PubMed] [Google Scholar]
  13. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kreutzberg G. W., Schubert P. Volume changes in the axon during regeneration. Acta Neuropathol. 1971;17(3):220–226. doi: 10.1007/BF00685055. [DOI] [PubMed] [Google Scholar]
  15. Kuno M., Miyata Y., Muñoz-Martinez E. J. Differential reaction of fast and slow alpha-motoneurones to axotomy. J Physiol. 1974 Aug;240(3):725–739. doi: 10.1113/jphysiol.1974.sp010631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mori H., Komiya Y., Kurokawa M. Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons. J Cell Biol. 1979 Jul;82(1):174–184. doi: 10.1083/jcb.82.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peters A., Vaughn J. E. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J Cell Biol. 1967 Jan;32(1):113–119. doi: 10.1083/jcb.32.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sasaki-Sherrington S. E., Jacobs J. R., Stevens J. K. Intracellular control of axial shape in non-uniform neurites: a serial electron microscopic analysis of organelles and microtubules in AI and AII retinal amacrine neurites. J Cell Biol. 1984 Apr;98(4):1279–1290. doi: 10.1083/jcb.98.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shecket G., Lasek R. J. Preparation of neurofilament protein from guinea pig peripheral nerve and spinal cord. J Neurochem. 1980 Dec;35(6):1335–1344. doi: 10.1111/j.1471-4159.1980.tb09007.x. [DOI] [PubMed] [Google Scholar]
  21. Sinicropi D. V., McIlwain D. L. Changes in the amounts of cytoskeletal proteins within the perikarya and axons of regenerating frog motoneurons. J Cell Biol. 1983 Jan;96(1):240–247. doi: 10.1083/jcb.96.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiss P. A., Mayr R. Organelles in neuroplasmic ("axonal") flow: neurofilaments. Proc Natl Acad Sci U S A. 1971 Apr;68(4):846–850. doi: 10.1073/pnas.68.4.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zenker W., Mayr R., Gruber H. Axoplasmic organelles: quantitative differences between ventral and dorsal root fibres of the rat. Experientia. 1973 May 1;29(1):77–78. doi: 10.1007/BF01913263. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES