Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Oct 1;101(4):1236–1244. doi: 10.1083/jcb.101.4.1236

Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes

PMCID: PMC2113914  PMID: 2995403

Abstract

Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J. Biol. Chem. 259:7473-7479). The effects of platelet gelsolin and the binary gelsolin-actin complex on the depolymerization kinetics of rabbit skeletal muscle actin were studied by diluting pyrenyl F-actin into gelsolin or complex-containing buffers; a decrease in fluorescence represents disassembly of filaments. Dilution of F- actin to below the critical concentration required for filament assembly gave a biphasic depolymerization curve with both fast and slow components. Dilution into buffers containing gelsolin, as GCa2, increased the rate of depolymerization and gave a first order decay. The rate of decrease in fluorescence was found to be gelsolin concentration dependent. Electron microscopy of samples taken shortly after dilution into GCa2 showed a marked reduction in filament length consistent with filament severing and an increase in the number of ends. Conversely, occupancy of the EGTA-stable actin-binding site by an actin monomer eliminated the severing activity. Dilution of F-actin into the gelsolin-actin complex, either as GA1Ca1 or GA1Ca2, resulted in a decrease in the rate of depolymerization that was consistent with filament end capping. This result indicates that the EGTA-stable binding site is required and must be unoccupied for filament severing to occur. The effectiveness of gelsolin, GCa2, in causing filament depolymerization was dependent upon the ionic conditions: in KCI, actin filaments appeared to be more stable and less susceptible to gelsolin, whereas in Mg2+, actin filaments were more easily fragmented. Finally, a comparison of the number of kinetically active ends generated when filaments were diluted into gelsolin versus the number formed when gelsolin can function as a nucleation site suggests that gelsolin may sever more than once. The data are consistent with a mechanism where gelsolin, with both actin-binding sites unoccupied, can sever but not cap F-actin. Occupancy of the EGTA-stable binding site yields a gelsolin-actin complex that can no longer sever filaments, but can cap filament ends.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamburg J. R., Harris H. E., Weeds A. G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 1980 Nov 17;121(1):178–182. doi: 10.1016/0014-5793(80)81292-0. [DOI] [PubMed] [Google Scholar]
  2. Bonder E. M., Fishkind D. J., Mooseker M. S. Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament. Cell. 1983 Sep;34(2):491–501. doi: 10.1016/0092-8674(83)90382-3. [DOI] [PubMed] [Google Scholar]
  3. Bonder E. M., Mooseker M. S. Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (villin): a new actin assembly assay using the Limulus acrosomal process. J Cell Biol. 1983 Apr;96(4):1097–1107. doi: 10.1083/jcb.96.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bretscher A., Weber K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci U S A. 1979 May;76(5):2321–2325. doi: 10.1073/pnas.76.5.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown S. S., Yamamoto K., Spudich J. A. A 40,000-dalton protein from Dictyostelium discoideum affects assembly properties of actin in a Ca2+-dependent manner. J Cell Biol. 1982 Apr;93(1):205–210. doi: 10.1083/jcb.93.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  8. Chaponnier C., Borgia R., Rungger-Brändle E., Weil R., Gabbiani G. An actin-destabilizing factor is present in human plasma. Experientia. 1979 Aug 15;35(8):1039–1041. doi: 10.1007/BF01949928. [DOI] [PubMed] [Google Scholar]
  9. Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooper J. A., Buhle E. L., Jr, Walker S. B., Tsong T. Y., Pollard T. D. Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry. 1983 Apr 26;22(9):2193–2202. doi: 10.1021/bi00278a021. [DOI] [PubMed] [Google Scholar]
  11. Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
  12. Craig S. W., Powell L. D. Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Cell. 1980 Dec;22(3):739–746. doi: 10.1016/0092-8674(80)90550-4. [DOI] [PubMed] [Google Scholar]
  13. Doi Y., Frieden C. Actin polymerization. The effect of brevin on filament size and rate of polymerization. J Biol Chem. 1984 Oct 10;259(19):11868–11875. [PubMed] [Google Scholar]
  14. Fattoum A., Hartwig J. H., Stossel T. P. Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry. 1983 Mar 1;22(5):1187–1193. doi: 10.1021/bi00274a031. [DOI] [PubMed] [Google Scholar]
  15. Giffard R. G., Weeds A. G., Spudich J. A. Ca2+-dependent binding of severin to actin: a one-to-one complex is formed. J Cell Biol. 1984 May;98(5):1796–1803. doi: 10.1083/jcb.98.5.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glenney J. R., Jr, Kaulfus P., Weber K. F actin assembly modulated by villin: Ca++-dependent nucleation and capping of the barbed end. Cell. 1981 May;24(2):471–480. doi: 10.1016/0092-8674(81)90338-x. [DOI] [PubMed] [Google Scholar]
  17. Goldstein D. A. Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands. Biophys J. 1979 May;26(2):235–242. doi: 10.1016/S0006-3495(79)85247-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harris D. A., Schwartz J. H. Characterization of brevin, a serum protein that shortens actin filaments. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6798–6802. doi: 10.1073/pnas.78.11.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hasegawa T., Takahashi S., Hayashi H., Hatano S. Fragmin: a calcium ion sensitive regulatory factor on the formation of actin filaments. Biochemistry. 1980 Jun 10;19(12):2677–2683. doi: 10.1021/bi00553a021. [DOI] [PubMed] [Google Scholar]
  20. Isenberg G., Aebi U., Pollard T. D. An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature. 1980 Dec 4;288(5790):455–459. doi: 10.1038/288455a0. [DOI] [PubMed] [Google Scholar]
  21. Karr T. L., Kristofferson D., Purich D. L. Mechanism of microtubule depolymerization. Correlation of rapid induced disassembly experiments with a kinetic model for endwise depolymerization. J Biol Chem. 1980 Sep 25;255(18):8560–8566. [PubMed] [Google Scholar]
  22. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  23. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  24. Kristofferson D., Karr T. L., Purich D. L. Dynamics of linear protein polymer disassembly. J Biol Chem. 1980 Sep 25;255(18):8567–8572. [PubMed] [Google Scholar]
  25. Kurth M. C., Bryan J. Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin. J Biol Chem. 1984 Jun 25;259(12):7473–7479. [PubMed] [Google Scholar]
  26. Kurth M. C., Wang L. L., Dingus J., Bryan J. Purification and characterization of a gelsolin-actin complex from human platelets. Evidence for Ca2+-insensitive functions. J Biol Chem. 1983 Sep 25;258(18):10895–10903. [PubMed] [Google Scholar]
  27. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  28. Mooseker M. S., Graves T. A., Wharton K. A., Falco N., Howe C. L. Regulation of microvillus structure: calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells. J Cell Biol. 1980 Dec;87(3 Pt 1):809–822. doi: 10.1083/jcb.87.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  31. Tobacman L. S., Korn E. D. The kinetics of actin nucleation and polymerization. J Biol Chem. 1983 Mar 10;258(5):3207–3214. [PubMed] [Google Scholar]
  32. Walsh T. P., Weber A., Higgins J., Bonder E. M., Mooseker M. S. Effect of villin on the kinetics of actin polymerization. Biochemistry. 1984 Jun 5;23(12):2613–2621. doi: 10.1021/bi00307a012. [DOI] [PubMed] [Google Scholar]
  33. Wang L. L., Bryan J. Isolation of calcium-dependent platelet proteins that interact with actin. Cell. 1981 Sep;25(3):637–649. doi: 10.1016/0092-8674(81)90171-9. [DOI] [PubMed] [Google Scholar]
  34. Wang L. L., Spudich J. A. A 45,000-mol-wt protein from unfertilized sea urchin eggs severs actin filaments in a calcium-dependent manner and increases the steady-state concentration of nonfilamentous actin. J Cell Biol. 1984 Sep;99(3):844–851. doi: 10.1083/jcb.99.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wegner A., Engel J. Kinetics of the cooperative association of actin to actin filaments. Biophys Chem. 1975 Jul;3(3):215–225. doi: 10.1016/0301-4622(75)80013-5. [DOI] [PubMed] [Google Scholar]
  36. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
  37. Wegner A., Savko P. Fragmentation of actin filaments. Biochemistry. 1982 Apr 13;21(8):1909–1913. doi: 10.1021/bi00537a032. [DOI] [PubMed] [Google Scholar]
  38. Yin H. L., Albrecht J. H., Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol. 1981 Dec;91(3 Pt 1):901–906. doi: 10.1083/jcb.91.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yin H. L., Hartwig J. H., Maruyama K., Stossel T. P. Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem. 1981 Sep 25;256(18):9693–9697. [PubMed] [Google Scholar]
  40. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES