Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Oct 1;101(4):1578–1590. doi: 10.1083/jcb.101.4.1578

Biochemical studies on cell fusion. I. Lipid composition of fusion- resistant cells

PMCID: PMC2113923  PMID: 4044645

Abstract

A series of stable cell mutants of mouse fibroblasts were previously isolated (Roos, D. S. and R. L. Davidson, 1980, Somatic Cell Genet., 6:381-390) that exhibit varying degrees of resistance to the fusion- inducing effect of polyethylene glycol (PEG), but are morphologically similar to the parental cells from which they were derived. Biochemical analysis of these mutant cell lines has revealed differences in whole cell lipid composition which are directly correlated with their susceptibility to fusion. Fusion-resistant cells contain elevated levels of neutral lipids, particularly triglycerides and an unusual ether-linked lipid, O-alkyl, diacylglycerol. This ether lipid is increased approximately 35-fold over parental cells in the most highly PEG-resistant cell line. Fusion-resistant cells also contain more highly saturated fatty acyl chains (ratio of saturated to polyunsaturated fatty acids [S/P ratio] approximately 4:1) than the parental line (S/P ratio approximately 1:1). Cells which are intermediate in their resistance to PEG have ether lipid and fatty acid composition which is intermediate between the parental cells and the most fusion-resistant mutants. In a related communication (Roos, D. S. and P. W. Choppin, 1985, J. Cell. Biol., 100:1591-1598) evidence is presented that alteration of lipid content can predictably control the fusion response of these cells.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem J. 1973 Sep;136(1):147–155. doi: 10.1042/bj1360147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen T. M., McAllister L., Mausolf S., Gyorffy E. Liposome-cell interactions. A study of the interactions of liposomes containing entrapped anti-cancer drugs with the EMT6, S49 and AE1 (transport-deficient) cell lines. Biochim Biophys Acta. 1981 May 6;643(2):346–362. doi: 10.1016/0005-2736(81)90080-8. [DOI] [PubMed] [Google Scholar]
  3. Araki E., Phillips F., Privett O. S. Studies on lipid and fatty acid composition of human hepatoma tissue. Lipids. 1974 Sep;9(9):707–712. doi: 10.1007/BF02532179. [DOI] [PubMed] [Google Scholar]
  4. Benveniste J., Henson P. M., Cochrane C. G. Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med. 1972 Dec 1;136(6):1356–1377. doi: 10.1084/jem.136.6.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Besterman J. M., Low R. B. Endocytosis: a review of mechanisms and plasma membrane dynamics. Biochem J. 1983 Jan 15;210(1):1–13. doi: 10.1042/bj2100001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blow A. M., Botham G. M., Fisher D., Goodall A. H., Tilcock C. P., Lucy J. A. Water and calcium ions in cell fusion induced by poly(ethylene glycol). FEBS Lett. 1978 Oct 15;94(2):305–310. doi: 10.1016/0014-5793(78)80963-6. [DOI] [PubMed] [Google Scholar]
  7. Bollinger J. N. The isolation and tentative identification of diacylglyceryl ethers from the walker 256 carcinoma of the rat and a human lymphosarcoma. Lipids. 1967 Mar;2(2):143–148. doi: 10.1007/BF02530914. [DOI] [PubMed] [Google Scholar]
  8. Brown A. J., Snyder F. Alkyldihydroxyacetone-P synthase. Solubilization, partial purification, new assay method, and evidence for a ping-pong mechanism. J Biol Chem. 1982 Aug 10;257(15):8835–8839. [PubMed] [Google Scholar]
  9. Brown A. J., Snyder F. The mechanism of alkyldihydroxyacetone-P synthase. Formation of [3H]H2O from acyl[1-R-3H]dihydroxyacetone-P by purified alkyldihydroxyacetone-P synthase in the absence of acylhydrolase activity. J Biol Chem. 1983 Apr 10;258(7):4184–4189. [PubMed] [Google Scholar]
  10. Brown R. C., Blank M. L., Kostyu J. A., Osburn P., Kilgore A., Snyder F. Analysis of tumor-associated alkyldiacylglycerols and other lipids during radiation-induced thymic leukemogenesis. Proc Soc Exp Biol Med. 1975 Jul;149(3):808–813. doi: 10.3181/00379727-149-38904. [DOI] [PubMed] [Google Scholar]
  11. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  12. Davidson R. L. Genetics of cultured mammalian cells, as studied by somatic cell hybridization. Natl Cancer Inst Monogr. 1978 May;(48):21–30. [PubMed] [Google Scholar]
  13. Davidson R. L., Gerald P. S. Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somatic Cell Genet. 1976 Mar;2(2):165–176. doi: 10.1007/BF01542629. [DOI] [PubMed] [Google Scholar]
  14. Davis P. A., Hajra A. K. The enzymatic exchange of the acyl group of acyl dihydroxyacetone phosphate with free fatty acids. Biochem Biophys Res Commun. 1977 Jan 10;74(1):100–105. [PubMed] [Google Scholar]
  15. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  16. Friedberg S. J., Halpert M. Ehrlich ascites tumor cell surface membranes: an abnormality in ether lipid content. J Lipid Res. 1978 Jan;19(1):57–64. [PubMed] [Google Scholar]
  17. Friedberg S. J., Weintraub S. T., Singer M. R., Greene R. C. The mechanism of ether bond formation in O-alkyl lipid synthesis in Ehrlich ascites tumor. Unusual cleavage of the fatty acid moiety of acyl dihydroxyacetone phosphate. J Biol Chem. 1983 Jan 10;258(1):136–142. [PubMed] [Google Scholar]
  18. Godfrey W., Doe B., Wallace E. F., Bredt B., Wofsy L. Affinity targeting of membrane vesicles to cell surfaces. Exp Cell Res. 1981 Sep;135(1):137–145. doi: 10.1016/0014-4827(81)90306-2. [DOI] [PubMed] [Google Scholar]
  19. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  20. Guccion J. G., Enzinger F. M. Malignant giant cell tumor of soft parts. An analysis of 32 cases. Cancer. 1972 Jun;29(6):1518–1529. doi: 10.1002/1097-0142(197206)29:6<1518::aid-cncr2820290616>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  21. HENLE G., DEINHARDT F., GIRARDI A. Cytolytic effects of mumps virus in tissue cultures of epithelial cells. Proc Soc Exp Biol Med. 1954 Nov;87(2):386–393. doi: 10.3181/00379727-87-21390. [DOI] [PubMed] [Google Scholar]
  22. Hajra A. K., Burke C. L., Jones C. L. Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J Biol Chem. 1979 Nov 10;254(21):10896–10900. [PubMed] [Google Scholar]
  23. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  24. Hanahan D. J., Demopoulos C. A., Liehr J., Pinckard R. N. Identification of platelet activating factor isolated from rabbit basophils as acetyl glyceryl ether phosphorylcholine. J Biol Chem. 1980 Jun 25;255(12):5514–5516. [PubMed] [Google Scholar]
  25. Holmes K. V., Choppin P. W. On the role of the response of the cell membrane in determining virus virulence. Contrasting effects of the parainfluenza virus SV5 in two cell types. J Exp Med. 1966 Sep 1;124(3):501–520. doi: 10.1084/jem.124.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Horrocks L. A. The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin-layer chromatography. J Lipid Res. 1968 Jul;9(4):469–472. [PubMed] [Google Scholar]
  27. Howard B. V., Morris H. P., Bailey J. M. Ether-lipids, -glycerol phosphate dehydrogenase, and growth rate in tumors and cultured cells. Cancer Res. 1972 Jul;32(7):1533–1538. [PubMed] [Google Scholar]
  28. Karnovsky M. J. Lipid domains in biological membranes: their structural and functional perturbation by free fatty acids and the regulation of receptor mobility. Co-presidential address. Am J Pathol. 1979 Nov;97(2):212–221. [PMC free article] [PubMed] [Google Scholar]
  29. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  30. Klebe R. J., Mancuso M. G. Chemicals which promote cell hybridization. Somatic Cell Genet. 1981 Jul;7(4):473–488. doi: 10.1007/BF01542991. [DOI] [PubMed] [Google Scholar]
  31. Knutton S. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol. J Cell Sci. 1979 Apr;36:61–72. doi: 10.1242/jcs.36.1.61. [DOI] [PubMed] [Google Scholar]
  32. Lin H. J., Ho F. C., Lee C. L. Abnormal distribution of O-alkyl groups in the neutral glycerolipids from human hepatocellular carcinomas. Cancer Res. 1978 Apr;38(4):946–949. [PubMed] [Google Scholar]
  33. Loyter A., Vainstein A., Graessmann M., Graessmann A. Fusion-mediated injection of SV40-DNA. Introduction of SV40-DNA into tissue culture cells by the use of DNA-loaded reconstituted Sendai virus envelopes. Exp Cell Res. 1983 Feb;143(2):415–425. doi: 10.1016/0014-4827(83)90068-x. [DOI] [PubMed] [Google Scholar]
  34. Nicolau C., Legrand A., Soriano P. Liposomes for gene transfer and expression in vivo. Ciba Found Symp. 1984;103:254–267. doi: 10.1002/9780470720844.ch16. [DOI] [PubMed] [Google Scholar]
  35. OKADA Y. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation. Exp Cell Res. 1962 Feb;26:98–107. doi: 10.1016/0014-4827(62)90205-7. [DOI] [PubMed] [Google Scholar]
  36. Oshiro L. S., Schieble J. H., Lennette E. H. Electron microscopic studies of coronavirus. J Gen Virol. 1971 Aug;12(2):161–168. doi: 10.1099/0022-1317-12-2-161. [DOI] [PubMed] [Google Scholar]
  37. Pfleger R. C., Anderson N. G., Snyder F. Lipid class and fatty acid composition of rat liver plasma membranes isolated by zonal centrifugation. Biochemistry. 1968 Aug;7(8):2826–2833. doi: 10.1021/bi00848a019. [DOI] [PubMed] [Google Scholar]
  38. Pontecorvo G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genet. 1975 Oct;1(4):397–400. doi: 10.1007/BF01538671. [DOI] [PubMed] [Google Scholar]
  39. ROIZMAN B. Polykaryocytosis. Cold Spring Harb Symp Quant Biol. 1962;27:327–342. doi: 10.1101/sqb.1962.027.001.031. [DOI] [PubMed] [Google Scholar]
  40. Robinson J. M., Roos D. S., Davidson R. L., Karnovsky M. J. Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. J Cell Sci. 1979 Dec;40:63–75. doi: 10.1242/jcs.40.1.63. [DOI] [PubMed] [Google Scholar]
  41. Roos D. S., Choppin P. W. Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration. J Cell Biol. 1985 Oct;101(4):1591–1598. doi: 10.1083/jcb.101.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Roos D. S., Choppin P. W. Tumorigenicity of cell lines with altered lipid composition. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7622–7626. doi: 10.1073/pnas.81.23.7622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Roos D. S., Davidson R. L. Isolation of mouse cell lines resistant to the fusion-inducing effect of polyethylene glycol. Somatic Cell Genet. 1980 May;6(3):381–390. doi: 10.1007/BF01542790. [DOI] [PubMed] [Google Scholar]
  44. Roos D. S., Robinson J. M., Davidson R. L. Cell fusion and intramembrane particle distribution in polyethylene glycol-resistant cells. J Cell Biol. 1983 Sep;97(3):909–917. doi: 10.1083/jcb.97.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  46. Schroeder F., Vagelos P. R. Effects of phospholipid base analogues on the subcellular membrane ether composition of suspension cultured LM cells. Biochim Biophys Acta. 1976 Aug 23;441(2):239–254. doi: 10.1016/0005-2760(76)90167-3. [DOI] [PubMed] [Google Scholar]
  47. Schuber F., Hong K., Düzgünes N., Papahadjopoulos D. Polyamines as modulators of membrane fusion: aggregation and fusion of liposomes. Biochemistry. 1983 Dec 20;22(26):6134–6140. doi: 10.1021/bi00295a015. [DOI] [PubMed] [Google Scholar]
  48. Scott C. C., Heckman C. A., Snyder F. Regulation of ether lipids and their precursors in relation to glycolysis in cultured neoplastic cells. Biochim Biophys Acta. 1979 Nov 21;575(2):215–224. doi: 10.1016/0005-2760(79)90023-7. [DOI] [PubMed] [Google Scholar]
  49. Snyder F., Blank M. L., Morris H. P. Occurrence and nature of O-alkyl and O-alk-I-enyl moieties of glycerol in lipids of Morris transplanted hepatomas and normal rat liver. Biochim Biophys Acta. 1969 Apr 29;176(3):502–510. doi: 10.1016/0005-2760(69)90217-3. [DOI] [PubMed] [Google Scholar]
  50. Snyder F. Thin-layer chromatographic behavior of glycerolipid analogs containing ether, ester, hydroxyl, and ketone groupings. J Chromatogr. 1973 Jul 18;82(1):7–14. doi: 10.1016/s0021-9673(01)80070-4. [DOI] [PubMed] [Google Scholar]
  51. Soodsma J. F., Piantadosi C., Snyder F. The biocleavage of alkyl glyceryl ethers in Morris hepatomas and other transplantable neoplasms. Cancer Res. 1970 Feb;30(2):309–311. [PubMed] [Google Scholar]
  52. Spector A. A., Kiser R. E., Denning G. M., Koh S. W., DeBault L. E. Modification of the fatty acid composition of cultured human fibroblasts. J Lipid Res. 1979 May;20(4):536–547. [PubMed] [Google Scholar]
  53. Spector A. A., Mathur S. N., Kaduce T. L., Hyman B. T. Lipid nutrition and metabolism of cultured mammalian cells. Prog Lipid Res. 1980;19(3-4):155–186. doi: 10.1016/0163-7827(80)90003-x. [DOI] [PubMed] [Google Scholar]
  54. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Stubbs C. D., Smith A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984 Jan 27;779(1):89–137. doi: 10.1016/0304-4157(84)90005-4. [DOI] [PubMed] [Google Scholar]
  56. Tavassoli M., Kosower N. S., Halverson C., Aoki M., Kosower E. M. Membrane fusion induced by the membrane mobility agent, A2C. Differentiation between fusible and non-fusible cells. Transfer of fusibility. Biochim Biophys Acta. 1980 Oct 2;601(3):544–558. doi: 10.1016/0005-2736(80)90557-x. [DOI] [PubMed] [Google Scholar]
  57. Tilcock C. P., Fisher D. Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta. 1979 Oct 19;557(1):53–61. doi: 10.1016/0005-2736(79)90089-0. [DOI] [PubMed] [Google Scholar]
  58. Tillack T. W., Wong M., Allietta M., Thompson T. E. Organization of the glycosphingolipid asialo-GM1 in phosphatidylcholine bilayers. Biochim Biophys Acta. 1982 Oct 7;691(2):261–273. doi: 10.1016/0005-2736(82)90415-1. [DOI] [PubMed] [Google Scholar]
  59. White J., Matlin K., Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol. 1981 Jun;89(3):674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wojcieszyn J. W., Schlegel R. A., Lumley-Sapanski K., Jacobson K. A. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983 Jan;96(1):151–159. doi: 10.1083/jcb.96.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wood R., Anderson N. G., Swartzendruber D. C. Tumor lipids: characterization of the lipids isolated from membranous material. Arch Biochem Biophys. 1970 Nov;141(1):190–197. doi: 10.1016/0003-9861(70)90122-0. [DOI] [PubMed] [Google Scholar]
  62. Wood R., Snyder F. Characterization and identification of glyceryl ether diesters present in tumor cells. J Lipid Res. 1967 Sep;8(5):494–500. [PubMed] [Google Scholar]
  63. Wykle R. L., Plantadosi C., Snyder F. The role of acyldihydroxyacetone phosphate, reduced nicotinamide adenine dinucleotide, and reduced nicotinamide adenine dinucleotide phosphate in the biosynthesis of O-alkyl glycerolipids by microsomal enzymes of Ehrlich ascites tumor. J Biol Chem. 1972 May 10;247(9):2944–2948. [PubMed] [Google Scholar]
  64. Zimmermann U., Vienken J. Electric field-induced cell-to-cell fusion. J Membr Biol. 1982;67(3):165–182. doi: 10.1007/BF01868659. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES