Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Oct 1;101(4):1413–1421. doi: 10.1083/jcb.101.4.1413

Myomesin and M-protein: expression of two M-band proteins in pectoral muscle and heart during development

PMCID: PMC2113924  PMID: 4044641

Abstract

The expression of the myofibrillar M-band proteins myomesin and M- protein was studied in chicken pectoral muscle and heart during differentiation using monoclonal antibodies in a double-antibody sandwich enzyme-linked immunosorbent assay, immunoblotting, and immunocytochemistry. In presumptive pectoral muscle, myomesin accumulated first, increasing from 2% of the adult concentration at day 7 to 70% by day 16 in ovo. M-protein accumulation lagged 6-7 d behind that of myomesin attaining only 40% of the adult concentration in ovo. The molecular masses of myomesin (185 kD) and M-protein (165 kD) remained constant during embryogenesis. In cultured myogenic cells the accumulation and M-band localization of myomesin preceded that of M- protein by 1.5 d. Chicken heart was shown, in addition to M-protein, to contain unique isoforms of myomesin. In hearts of 6 d embryos, a 195-kD myomesin isoform was the major species; throughout development, however, a transition to a mixture of 195 and 190 kD was observed, the latter being the major species in the adult tissue. During heart differentiation the initial accumulation of myomesin again preceded that of M-protein, albeit on an earlier time scale than in pectoral muscle with M-protein reaching adult proportions first.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Craig R. Structure of A-segments from frog and rabbit skeletal muscle. J Mol Biol. 1977 Jan 5;109(1):69–81. doi: 10.1016/s0022-2836(77)80046-6. [DOI] [PubMed] [Google Scholar]
  2. Crow M. T., Olson P. S., Stockdale F. E. Myosin light-chain expression during avian muscle development. J Cell Biol. 1983 Mar;96(3):736–744. doi: 10.1083/jcb.96.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dayton W. R., Schollmeyer J. V., Lepley R. A., Cortés L. R. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Biochim Biophys Acta. 1981 May 14;659(1):48–61. doi: 10.1016/0005-2744(81)90270-9. [DOI] [PubMed] [Google Scholar]
  4. Doetschman T. C., Eppenberger H. M. Comparison of M-line and other myofibril components during reversible phorbol ester treatment. Eur J Cell Biol. 1984 Mar;33(2):265–274. [PubMed] [Google Scholar]
  5. Eppenberger H. M., Perriard J. C., Rosenberg U. B., Strehler E. E. The Mr 165,000 M-protein myomesin: a specific protein of cross-striated muscle cells. J Cell Biol. 1981 May;89(2):185–193. doi: 10.1083/jcb.89.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grove B. K., Kurer V., Lehner C., Doetschman T. C., Perriard J. C., Eppenberger H. M. A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies. J Cell Biol. 1984 Feb;98(2):518–524. doi: 10.1083/jcb.98.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanson J., O'Brien E. J., Bennett P. M. Structure of the myosin-containing filament assembly (A-segment) separated from frog skeletal muscle. J Mol Biol. 1971 Jun 28;58(3):865–871. doi: 10.1016/0022-2836(71)90045-3. [DOI] [PubMed] [Google Scholar]
  8. Kaur H., Sanwal B. D. Regulation of the activity of a calcium-activated neutral protease during differentiation of skeletal myoblasts. Can J Biochem. 1981 Sep;59(9):743–747. doi: 10.1139/o81-103. [DOI] [PubMed] [Google Scholar]
  9. Masaki T., Takaiti O. M-protein. J Biochem. 1974 Feb;75(2):367–380. doi: 10.1093/oxfordjournals.jbchem.a130403. [DOI] [PubMed] [Google Scholar]
  10. Nigg E. A., Walter G., Singer S. J. On the nature of crossreactions observed with antibodies directed to defined epitopes. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5939–5943. doi: 10.1073/pnas.79.19.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  12. Street S. F. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol. 1983 Mar;114(3):346–364. doi: 10.1002/jcp.1041140314. [DOI] [PubMed] [Google Scholar]
  13. Strehler E. E., Carlsson E., Eppenberger H. M., Thornell L. E. Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immunocytochemistry and ultramicrotomy. J Mol Biol. 1983 May 15;166(2):141–158. doi: 10.1016/s0022-2836(83)80003-5. [DOI] [PubMed] [Google Scholar]
  14. Strehler E. E., Pelloni G., Heizmann C. W., Eppenberger H. M. Biochemical and ultrastructural aspects of Mr 165,000 M-protein in cross-striated chicken muscle. J Cell Biol. 1980 Sep;86(3):775–783. doi: 10.1083/jcb.86.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Strehler E. E., Pelloni G., Heizmann C. W., Eppenberger H. M. M-protein in chicken cardiac muscle. Exp Cell Res. 1979 Nov;124(1):39–45. doi: 10.1016/0014-4827(79)90255-6. [DOI] [PubMed] [Google Scholar]
  16. Sweeney L. J., Clark W. A., Jr, Umeda P. K., Zak R., Manasek F. J. Immunofluorescence analysis of the primordial myosin detectable in embryonic striated muscle. Proc Natl Acad Sci U S A. 1984 Feb;81(3):797–800. doi: 10.1073/pnas.81.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Turner D. C., Maier V., Eppenberger H. M. Creatine kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells. Dev Biol. 1974 Mar;37(1):63–89. doi: 10.1016/0012-1606(74)90170-5. [DOI] [PubMed] [Google Scholar]
  19. Turner D. C., Wallimann T., Eppenberger H. M. A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci U S A. 1973 Mar;70(3):702–705. doi: 10.1073/pnas.70.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Uotila M., Ruoslahti E., Engvall E. Two-site sandwich enzyme immunoassay with monoclonal antibodies to human alpha-fetoprotein. J Immunol Methods. 1981;42(1):11–15. doi: 10.1016/0022-1759(81)90219-2. [DOI] [PubMed] [Google Scholar]
  21. Wallimann T., Doetschman T. C., Eppenberger H. M. Novel staining pattern of skeletal muscle M-lines upon incubation with antibodies against MM-creatine kinase. J Cell Biol. 1983 Jun;96(6):1772–1779. doi: 10.1083/jcb.96.6.1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wallimann T., Eppenberger H. M. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle. Cell Muscle Motil. 1985;6:239–285. doi: 10.1007/978-1-4757-4723-2_8. [DOI] [PubMed] [Google Scholar]
  23. Wallimann T., Kuhn H. J., Pelloni G., Turner D. C., Eppenberger H. M. Localization of creatine kinase isoenzymes in myofibrils. II. Chicken heart muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):318–325. doi: 10.1083/jcb.75.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wallimann T., Schlösser T., Eppenberger H. M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem. 1984 Apr 25;259(8):5238–5246. [PubMed] [Google Scholar]
  25. Wallimann T., Turner D. C., Eppenberger H. M. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):297–317. doi: 10.1083/jcb.75.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wilson F. J., Irish M. J. The structure of segments of the anisotropic band of muscle. II. Preparation and properties of A segments from vertebrate skeletal muscle. Cell Tissue Res. 1980;212(2):213–223. doi: 10.1007/BF00233956. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES