Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Oct 1;101(4):1245–1256. doi: 10.1083/jcb.101.4.1245

Behavior of a fluorescent analogue of calmodulin in living 3T3 cells

PMCID: PMC2113932  PMID: 4044638

Abstract

We have prepared and partially characterized a lissamine-rhodamine B fluorescent analogue of calmodulin, LRB-CM. The analogue had a dye/protein ratio of approximately 1.0 and contained no free dye or contaminating labeled proteins. LRB-CM was indistinguishable from native calmodulin upon SDS PAGE and in assays of phosphodiesterase and myosin light chain kinase. The emission spectrum of LRB-CM was insensitive to changes in pH, ionic strength, and temperature over the physiological range, but the apparent quantum yield was influenced somewhat by divalent cation concentration. LRB-CM injected into living Swiss 3T3 fibroblasts became associated with nitrobenzoxadiazole- phallacidin staining stress fibers in some interphase cells. LRB-CM and acetamidofluorescein-labeled actin co-injected into the same cell both became associated with fibers in some cells, but in most cases association of the two analogues with fibers was mutually exclusive. This suggests that calmodulin may differ from actin in the timing of incorporation into stress fibers or that we have distinguished distinct populations of stress fibers. We were able to detect no direct interaction of LRB-CM with actin by fluorescence photobleaching recovery (FRAP) of aqueous solutions. Interaction of LRB-CM with myosin light chain kinase also was not detected by FRAP. This suggests that the mean lifetime of the calmodulin-myosin light chain kinase complex is too short to affect the diffusion coefficient of calmodulin. We examined various fluorescent derivatives of proteins and dextrans as suitable control molecules for quantitative fluorescent analogue cytochemistry in living cells. Fluorescein isothiocyanate-dextrans were found to be preferable to all the proteins tested, since their mobilities in cytoplasm were inversely dependent on molecular size and there was no evidence of binding to intracellular components. In contrast, FRAP of LRB-CM in the cytoplasm of living 3T3 cells suggested that the analogue interacts with intracellular components with a range of affinities. The mobility of LRB-CM in the cytoplasm was sensitive to treatment of the cells with trifluoperazine, which suggests that at least some of the intracellular binding sites are specific for calmodulin in the calcium-bound form. FRAP of LRB-CM in the nuclei of living 3T3 cells indicated that the analogue was highly mobile within the nucleus but entered the nucleus from the cytoplasm much more slowly than fluorescein isothiocyanate-dextran of comparable molecular size and much more slowly than predicted from its mobility in cytoplasm.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
  2. Amato P. A., Unanue E. R., Taylor D. L. Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. J Cell Biol. 1983 Mar;96(3):750–761. doi: 10.1083/jcb.96.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen B., Osborn M., Weber K. Specific visualization of the distribution of the calcium dependent regulatory protein of cyclic nucleotide phosphodiesterase (modulator protein) in tissue culture cells by immunofluorescence microscopy: mitosis and intercellular bridge. Cytobiologie. 1978 Aug;17(2):354–364. [PubMed] [Google Scholar]
  4. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  6. Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
  7. Chafouleas J. G., Bolton W. E., Hidaka H., Boyd A. E., 3rd, Means A. R. Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 1982 Jan;28(1):41–50. doi: 10.1016/0092-8674(82)90373-7. [DOI] [PubMed] [Google Scholar]
  8. Dabrowska R., Aromatorio D., Sherry J. M., Hartshorne D. J. Composition of the myosin light chain kinase from chicken gizzard. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1263–1272. doi: 10.1016/0006-291x(77)91429-2. [DOI] [PubMed] [Google Scholar]
  9. Dabrowska R., Hinkins S., Walsh M. P., Hartshorne D. J. The binding of smooth muscle myosin light chain kinase to actin. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1524–1531. doi: 10.1016/s0006-291x(82)80172-1. [DOI] [PubMed] [Google Scholar]
  10. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  11. Deery W. J., Means A. R., Brinkley B. R. Calmodulin-microtubule association in cultured mammalian cells. J Cell Biol. 1984 Mar;98(3):904–910. doi: 10.1083/jcb.98.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diacumakos E. G. Methods for micromanipulation of human somatic cells in culture. Methods Cell Biol. 1973;7:287–311. doi: 10.1016/s0091-679x(08)61783-5. [DOI] [PubMed] [Google Scholar]
  13. Elson E. L., Reidler J. A. Analysis of cell surface interactions by measurements of lateral mobility. J Supramol Struct. 1979;12(4):481–489. doi: 10.1002/jss.400120408. [DOI] [PubMed] [Google Scholar]
  14. Glacy S. D. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells. J Cell Biol. 1983 Oct;97(4):1207–1213. doi: 10.1083/jcb.97.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howe C. L., Mooseker M. S., Graves T. A. Brush-border calmodulin. A major component of the isolated microvillus core. J Cell Biol. 1980 Jun;85(3):916–923. doi: 10.1083/jcb.85.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobson K., Wojcieszyn J. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6747–6751. doi: 10.1073/pnas.81.21.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keith C., DiPaola M., Maxfield F. R., Shelanski M. L. Microinjection of Ca++-calmodulin causes a localized depolymerization of microtubules. J Cell Biol. 1983 Dec;97(6):1918–1924. doi: 10.1083/jcb.97.6.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kessin R. H., Orlow S. J., Shapiro R. I., Franke J. Binding of inhibitor alters kinetic and physical properties of extracellular cyclic AMP phosphodiesterase from Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5450–5454. doi: 10.1073/pnas.76.11.5450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klee C. B., Vanaman T. C. Calmodulin. Adv Protein Chem. 1982;35:213–321. doi: 10.1016/s0065-3233(08)60470-2. [DOI] [PubMed] [Google Scholar]
  21. Koppel D. E. Association dynamics and lateral transport in biological membranes. J Supramol Struct Cell Biochem. 1981;17(1):61–67. doi: 10.1002/jsscb.380170107. [DOI] [PubMed] [Google Scholar]
  22. Kreis T. E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982 Jul;29(3):835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  23. Kreis T. E., Winterhalter K. H., Birchmeier W. In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3814–3818. doi: 10.1073/pnas.76.8.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lanni F., Taylor D. L., Ware B. R. Fluorescence photobleaching recovery in solutions of labeled actin. Biophys J. 1981 Aug;35(2):351–364. doi: 10.1016/S0006-3495(81)84794-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lanni F., Ware B. R. Detection and characterization of actin monomers, oligomers, and filaments in solution by measurement of fluorescence photobleaching recovery. Biophys J. 1984 Jul;46(1):97–110. doi: 10.1016/S0006-3495(84)84002-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lazarides E. Two general classes of cytoplasmic actin filaments in tissue culture cells: the role of tropomyosin. J Supramol Struct. 1976;5(4):531(383)–563(415). doi: 10.1002/jss.400050410. [DOI] [PubMed] [Google Scholar]
  28. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee Y. C., Wolff J. The calmodulin-binding domain on microtubule-associated protein 2. J Biol Chem. 1984 Jul 10;259(13):8041–8044. [PubMed] [Google Scholar]
  30. Lepock J. R., Cheng K. H., Campbell S. D., Kruuv J. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells. Biophys J. 1983 Dec;44(3):405–412. doi: 10.1016/S0006-3495(83)84314-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lin J. J., Matsumura F., Yamashiro-Matsumura S. Tropomyosin-enriched and alpha-actinin-enriched microfilaments isolated from chicken embryo fibroblasts by monoclonal antibodies. J Cell Biol. 1984 Jan;98(1):116–127. doi: 10.1083/jcb.98.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Luby-Phelps K., Amato P. A., Taylor D. L. Selective immunocytochemical detection of fluorescent analogs with antibodies specific for the fluorophore. Cell Motil. 1984;4(2):137–149. doi: 10.1002/cm.970040207. [DOI] [PubMed] [Google Scholar]
  33. Malencik D. A., Anderson S. R., Shalitin Y., Schimerlik M. I. Rapid kinetic studies on calcium interactions with native and fluorescently labeled calmodulin. Biochem Biophys Res Commun. 1981 Jul 30;101(2):390–395. doi: 10.1016/0006-291x(81)91272-9. [DOI] [PubMed] [Google Scholar]
  34. Mastro A. M., Babich M. A., Taylor W. D., Keith A. D. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3414–3418. doi: 10.1073/pnas.81.11.3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Masuda H., Owaribe K., Hayashi H., Hatano S. Ca2+-dependent contraction of human lung fibroblasts treated with Triton X-100: a role of Ca2+-calmodulin-dependent phosphorylation of myosin 20,000-dalton light chain. Cell Motil. 1984;4(5):315–331. doi: 10.1002/cm.970040503. [DOI] [PubMed] [Google Scholar]
  36. Matsumura F., Yamashiro-Matsumura S., Lin J. J. Isolation and characterization of tropomyosin-containing microfilaments from cultured cells. J Biol Chem. 1983 May 25;258(10):6636–6644. [PubMed] [Google Scholar]
  37. Means A. R., Tash J. S., Chafouleas J. G. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982 Jan;62(1):1–39. doi: 10.1152/physrev.1982.62.1.1. [DOI] [PubMed] [Google Scholar]
  38. Ogawa Y., Tanokura M. Calcium binding to calmodulin: effects of ionic strength, Mg2+, pH and temperature. J Biochem. 1984 Jan;95(1):19–28. doi: 10.1093/oxfordjournals.jbchem.a134584. [DOI] [PubMed] [Google Scholar]
  39. Piazza G. A., Wallace R. W. Calmodulin accelerates the rate of polymerization of human platelet actin and alters the structural characteristics of actin filaments. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1683–1687. doi: 10.1073/pnas.82.6.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schliwa M., Euteneuer U., Bulinski J. C., Izant J. G. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1037–1041. doi: 10.1073/pnas.78.2.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sobue K., Kanda K., Adachi J., Kakiuchi S. Calmodulin-binding proteins that interact with actin filaments in a Ca2+-dependent flip-flop manner: survey in brain and secretory tissues. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6868–6871. doi: 10.1073/pnas.80.22.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sobue K., Muramoto Y., Fujita M., Kakiuchi S. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5652–5655. doi: 10.1073/pnas.78.9.5652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Taylor D. L., Fechheimer M. Cytoplasmic structure and contractility: the solation--contraction coupling hypothesis. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):185–197. doi: 10.1098/rstb.1982.0125. [DOI] [PubMed] [Google Scholar]
  44. Taylor D. L., Wang Y. L., Heiple J. M. Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas. J Cell Biol. 1980 Aug;86(2):590–598. doi: 10.1083/jcb.86.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Walsh C. Synthesis and assembly of the cytoskeleton of Naegleria gruberi flagellates. J Cell Biol. 1984 Feb;98(2):449–456. doi: 10.1083/jcb.98.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang Y. L., Lanni F., McNeil P. L., Ware B. R., Taylor D. L. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4660–4664. doi: 10.1073/pnas.79.15.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang Y. L. Reorganization of actin filament bundles in living fibroblasts. J Cell Biol. 1984 Oct;99(4 Pt 1):1478–1485. doi: 10.1083/jcb.99.4.1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang Y. L., Taylor D. L. Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J Cell Biol. 1979 Jun;81(3):672–679. doi: 10.1083/jcb.81.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wang Y. L., Taylor D. L. Preparation and characterization of a new molecular cytochemical probe: 5-iodoacetamidofluorescein-labeled actin. J Histochem Cytochem. 1980 Nov;28(11):1198–1206. doi: 10.1177/28.11.6107318. [DOI] [PubMed] [Google Scholar]
  50. Wehland J., Weber K. Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification. Exp Cell Res. 1980 Jun;127(2):397–408. doi: 10.1016/0014-4827(80)90444-9. [DOI] [PubMed] [Google Scholar]
  51. Welsh M. J., Dedman J. R., Brinkley B. R., Means A. R. Calcium-dependent regulator protein: localization in mitotic apparatus of eukaryotic cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1867–1871. doi: 10.1073/pnas.75.4.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Welsh M. J., Dedman J. R., Brinkley B. R., Means A. R. Tubulin and calmodulin. Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus. J Cell Biol. 1979 Jun;81(3):624–634. doi: 10.1083/jcb.81.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Willingham M. C., Wehland J., Klee C. B., Richert N. D., Rutherford A. V., Pastan I. H. Ultrastructural immunocytochemical localization of calmodulin in cultured cells. J Histochem Cytochem. 1983 Apr;31(4):445–461. doi: 10.1177/31.4.6338107. [DOI] [PubMed] [Google Scholar]
  54. Wojcieszyn J. W., Schlegel R. A., Wu E. S., Jacobson K. A. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4407–4410. doi: 10.1073/pnas.78.7.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zavortink M., Welsh M. J., McIntosh J. R. The distribution of calmodulin in living mitotic cells. Exp Cell Res. 1983 Dec;149(2):375–385. doi: 10.1016/0014-4827(83)90350-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES