Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1651–1664. doi: 10.1083/jcb.101.5.1651

An unusual lysosome compartment involved in vitellogenin endocytosis by Xenopus oocytes

PMCID: PMC2113954  PMID: 4055890

Abstract

We have investigated the lysosomal compartment of Xenopus oocytes to determine the possible role of this organelle in the endocytic pathway of the yolk protein precursor, vitellogenin. Oocytes have lysosome-like organelles of unusual enzymatic composition at all stages of their development, and the amount of hydrolase activity increases steadily throughout oogenesis. These unusual lysosomes appear to be located primarily in a peripheral zone of oocyte cytoplasm. At least two distinct populations of lysosomal organelles can be identified after sucrose density gradient fractionation of vitellogenic oocytes. Most enzyme activity resides in a compartment of large size and high density that appears to be a subpopulation of yolk platelets that are less dense than most platelets within the cell. The appearance of this high density peak of lysosomal enzyme activity coincides with the time of onset of vitellogenin endocytosis during oocyte development. The data suggest that endocytic vesicles that contain vitellogenin fuse with modified lysosomes shortly after their internalization by the oocyte. Pulse-chase experiments with radiolabeled vitellogenin suggest that the ligand passes through the low density platelet compartment en route to the heavy platelets. The accumulation of yolk proteins apparently results from a failure of these molecules to undergo complete digestion after their entry into an unusual lysosomal compartment. The yolk platelets that these proteins finally enter for prolonged storage appear to be a postlysosomal organelle.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowers W. E., Finkenstaedt J. T., de Duve C. Lysosomes in lymphoid tissue. I. The measurement of hydrolytic activities in whole homogenates. J Cell Biol. 1967 Feb;32(2):325–337. doi: 10.1083/jcb.32.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Busson-Mabillot S. Endosomes transfer yolk proteins to lysosomes in the vitellogenic oocyte of the trout. Biol Cell. 1984;51(1):53–66. doi: 10.1111/j.1768-322x.1984.tb00283.x. [DOI] [PubMed] [Google Scholar]
  3. Decroly M., Goldfinger M., Six-Tondeur N. Biochemical characterization of lysosomes in unfertilized eggs of Xenopus laevis. Biochim Biophys Acta. 1979 Nov 1;587(4):567–578. doi: 10.1016/0304-4165(79)90009-6. [DOI] [PubMed] [Google Scholar]
  4. Dehn P. F., Wallace R. A. Sequestered and injected vitellogenin. Alternative routes of protein processing in Xenopus oocytes. J Cell Biol. 1973 Sep;58(3):721–724. doi: 10.1083/jcb.58.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  6. EARL D. C., KORNER A. THE ISOLATION AND PROPERTIES OF CARDIAC RIBOSOMES AND POLYSOMES. Biochem J. 1965 Mar;94:721–734. doi: 10.1042/bj0940721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAYASHI M. HISTOCHEMICAL DEMONSTRATION OF N-ACETYL-BETA-GLUCOSAMINIDASE EMPLOYING NAPHTHOL AS-BI N-ACETYL-BETA -GLUCOSAMINIDE AS SUBSTRATE. J Histochem Cytochem. 1965 May-Jun;13:355–360. doi: 10.1177/13.5.355. [DOI] [PubMed] [Google Scholar]
  8. Harding C., Heuser J., Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983 Aug;97(2):329–339. doi: 10.1083/jcb.97.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. II. Metabolic fate of iodinated polypeptides of mouse L cells. J Cell Biol. 1975 Feb;64(2):461–479. doi: 10.1083/jcb.64.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jared D. W., Dumont J. N., Wallace R. A. Distribution of incorporated and synthesized protein among cell fractions of Xenopus oocytes. Dev Biol. 1973 Nov;35(1):19–28. doi: 10.1016/0012-1606(73)90003-1. [DOI] [PubMed] [Google Scholar]
  11. Lemanski L. F., Aldoroty R. Role of acid phosphatase in the breakdown of yolk platelets in developing amphibian embryos. J Morphol. 1977 Sep;153(3):419–425. doi: 10.1002/jmor.1051530307. [DOI] [PubMed] [Google Scholar]
  12. McNeil P. L., Tanasugarn L., Meigs J. B., Taylor D. L. Acidification of phagosomes is initiated before lysosomal enzyme activity is detected. J Cell Biol. 1983 Sep;97(3):692–702. doi: 10.1083/jcb.97.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oliver C. Characterization of basal lysosomes in exocrine acinar cells. J Histochem Cytochem. 1983 Oct;31(10):1209–1216. doi: 10.1177/31.10.6309950. [DOI] [PubMed] [Google Scholar]
  14. Opresko L., Wiley H. S., Wallace R. A. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand. Cell. 1980 Nov;22(1 Pt 1):47–57. doi: 10.1016/0092-8674(80)90153-1. [DOI] [PubMed] [Google Scholar]
  15. Opresko L., Wiley H. S., Wallace R. A. Proteins iodinated by the chloramine-T method appear to be degraded at an abnormally rapid rate after endocytosis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1556–1560. doi: 10.1073/pnas.77.3.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sawicki J. A., MacIntyre R. J. Localization at the ultrastructural level of maternality derived enzyme and determination of the time of paternal gene expression for acid phosphatase-1 in Drosophila melanogaster. Dev Biol. 1978 Mar;63(1):47–58. doi: 10.1016/0012-1606(78)90112-4. [DOI] [PubMed] [Google Scholar]
  17. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  19. Wall D. A., Wilson G., Hubbard A. L. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell. 1980 Aug;21(1):79–93. doi: 10.1016/0092-8674(80)90116-6. [DOI] [PubMed] [Google Scholar]
  20. Wallace R. A., Hollinger T. G. Turnover of endogenous, microinjected, and sequestered protein in Xenopus oocytes. Exp Cell Res. 1979 Mar 15;119(2):277–287. doi: 10.1016/0014-4827(79)90355-0. [DOI] [PubMed] [Google Scholar]
  21. Wallace R. A., Jared D. W., Dumont J. N., Sega M. W. Protein incorporation by isolated amphibian oocytes. 3. Optimum incubation conditions. J Exp Zool. 1973 Jun;184(3):321–333. doi: 10.1002/jez.1401840305. [DOI] [PubMed] [Google Scholar]
  22. Wallace R. A., Opresko L., Wiley H. S., Selman K. The oocyte as an endocytic cell. Ciba Found Symp. 1983;98:228–248. doi: 10.1002/9780470720790.ch13. [DOI] [PubMed] [Google Scholar]
  23. Ward R. T. The origin of protein and fatty yolk in Rana pipiens. III. Intramitochondrial and primary vesicular yolk formation in frog oocytes. Tissue Cell. 1978;10(3):515–524. doi: 10.1016/s0040-8166(16)30345-7. [DOI] [PubMed] [Google Scholar]
  24. Ward R. T. The origin of protein and fatty yolk in Rana pipiens. IV. Secondary vesicular yolk formation in frog oocytes. Tissue Cell. 1978;10(3):525–534. doi: 10.1016/s0040-8166(16)30346-9. [DOI] [PubMed] [Google Scholar]
  25. Wiley H. S., Opresko L., Wallace R. A. New methods for the purification of vertebrate vitellogenin. Anal Biochem. 1979 Aug;97(1):145–152. doi: 10.1016/0003-2697(79)90338-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES