Abstract
Statin, a 57,000-D protein characteristically found in nonreplicating cells, was identified by a monoclonal antibody produced by hybridomas established from mice injected with extracts of in vitro aged human fibroblasts (Wang, E., 1985, J. Cell Biol., 100:545-551). Fluorescence staining with the antibody shows that the expression of statin disappears upon reinitiation of the process for cell replication. The rapid de-expression is observed in fibroblasts involved in the in vitro wound-healing process, as well as in cells that have been subcultured after trypsinization and replated from a confluent culture. Kinetic analysis shows that 50% of the cell population lose their statin expression at 12 h after replating, before the actual events of mitosis. Immunogold labeling with highly purified antibodies localizes the protein at the nuclear envelope in nonreplicating cells, but not in their replicating counterparts. Immunoblotting analysis confirms the disappearance of statin in cells that have reentered the cycling process. Using the technique of flow cytometry to examine the large number of nonreplicating fibroblasts in confluent cultures, we have found that statin is mostly expressed in those cells showing the least amount of DNA content, whose growth is blocked at the G0/G1 stage of the cell cycle. This close correlation is rapidly altered once the cells are released from the confluent state. These results suggest that the expression of statin may be regulated by a fine mechanism controlling the transition from the nonreplicating to the replicating state, and that the protein is structurally associated with the nuclear envelope.
Full Text
The Full Text of this article is available as a PDF (966.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreeff M., Darzynkiewicz Z., Sharpless T. K., Clarkson B. D., Melamed M. R. Discrimination of human leukemia subtypes by flow cytometric analysis of cellular DNA and RNA. Blood. 1980 Feb;55(2):282–293. [PubMed] [Google Scholar]
- Azzarone B., Suarez H., Mingari M. C., Moretta L., Fauci A. S. 4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin. J Cell Biol. 1984 Mar;98(3):1133–1137. doi: 10.1083/jcb.98.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celis J. E., Fey S. J., Larsen P. M., Celis A. Expression of the transformation-sensitive protein "cyclin" in normal human epidermal basal cells and simian virus 40-transformed keratinocytes. Proc Natl Acad Sci U S A. 1984 May;81(10):3128–3132. doi: 10.1073/pnas.81.10.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faulk W. P., Taylor G. M. An immunocolloid method for the electron microscope. Immunochemistry. 1971 Nov;8(11):1081–1083. doi: 10.1016/0019-2791(71)90496-4. [DOI] [PubMed] [Google Scholar]
- Kay M. M. Localization of senescent cell antigen on band 3. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5753–5757. doi: 10.1073/pnas.81.18.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyachi K., Fritzler M. J., Tan E. M. Autoantibody to a nuclear antigen in proliferating cells. J Immunol. 1978 Dec;121(6):2228–2234. [PubMed] [Google Scholar]
- Takasaki Y., Fishwild D., Tan E. M. Characterization of proliferating cell nuclear antigen recognized by autoantibodies in lupus sera. J Exp Med. 1984 Apr 1;159(4):981–992. doi: 10.1084/jem.159.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasaki Y., Robinson W. A., Tan E. M. Proliferating cell nuclear antigen in blast crisis cells of patients with chronic myeloid leukemia. J Natl Cancer Inst. 1984 Sep;73(3):655–661. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsang V. C., Peralta J. M., Simons A. R. Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods Enzymol. 1983;92:377–391. doi: 10.1016/0076-6879(83)92032-3. [DOI] [PubMed] [Google Scholar]
- Wang E. A 57,000-mol-wt protein uniquely present in nonproliferating cells and senescent human fibroblasts. J Cell Biol. 1985 Feb;100(2):545–551. doi: 10.1083/jcb.100.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang E., Cairncross J. G., Yung W. K., Garber E. A., Liem R. K. An intermediate filament-associated protein, p50, recognized by monoclonal antibodies. J Cell Biol. 1983 Nov;97(5 Pt 1):1507–1514. doi: 10.1083/jcb.97.5.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang E., Goldman R. D. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J Cell Biol. 1978 Dec;79(3):708–726. doi: 10.1083/jcb.79.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang E., Krueger J. G. Application of a unique monoclonal antibody as a marker for nonproliferating subpopulations of cells of some tissue. J Histochem Cytochem. 1985 Jun;33(6):587–594. doi: 10.1177/33.6.3889143. [DOI] [PubMed] [Google Scholar]
- Welte K., Andreeff M., Platzer E., Holloway K., Rubin B. Y., Moore M. A., Mertelsmann R. Interleukin 2 regulates the expression of Tac antigen on peripheral blood T lymphocytes. J Exp Med. 1984 Nov 1;160(5):1390–1403. doi: 10.1084/jem.160.5.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]