Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1808–1816. doi: 10.1083/jcb.101.5.1808

Differential stability of Drosophila embryonic mRNAs during subsequent larval development

PMCID: PMC2113963  PMID: 3932366

Abstract

The relative stabilities of specific embryonic mRNAs that persist in Drosophila melanogaster larvae were determined using an approach that combined RNA density labeling with cell-free translation. Unlike the other methods commonly used to measure the decay of individual mRNAs, the density labeling approach does not depend on the use of transcriptional inhibitors or on the measurement of precursor pool specific activities. Using this approach, we have determined that different embryonic mRNA species persist for varying periods during subsequent development, with half-lives ranging from approximately 2 to approximately 30 h. The embryonic histone mRNAs are relatively unstable; they are no longer detectable by 9 h of larval development. By 41 h of larval development, 90% of the nonhistone mRNAs assayed have decayed considerably; computerized scanning densitometry of translation products indicates that these transcripts are not decaying as members of discrete half-life classes. The persisting mRNAs that remain are very long-lived; their in vitro translation products can still be detected after 91 h of larval development. We have tentatively identified the mRNAs that encode actin, tropomyosin, and tubulin as members of this stable mRNA population. Although embryonic mRNAs do fall into these three broad classes of stability, they appear to decay with a continuum of half-lives. Because the range of half-lives is so great, mRNA stability is probably an important factor controlling mRNA abundance during Drosophila development.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. V., Lengyel J. A. Changing rates of histone mRNA synthesis and turnover in Drosophila embryos. Cell. 1980 Oct;21(3):717–727. doi: 10.1016/0092-8674(80)90435-3. [DOI] [PubMed] [Google Scholar]
  2. Bautch V. L., Storti R. V., Mischke D., Pardue M. L. Organization and expression of Drosophila tropomyosin genes. J Mol Biol. 1982 Dec 5;162(2):231–250. doi: 10.1016/0022-2836(82)90524-1. [DOI] [PubMed] [Google Scholar]
  3. Ben-Ze'ev A., Farmer S. R., Penman S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell. 1979 Jun;17(2):319–325. doi: 10.1016/0092-8674(79)90157-0. [DOI] [PubMed] [Google Scholar]
  4. Bowman L. H., Emerson C. P., Jr Formation and stability of cytoplasmic mRNAs during myoblast differentiation: pulse-chase and density labeling analyses. Dev Biol. 1980 Nov;80(1):146–166. doi: 10.1016/0012-1606(80)90505-9. [DOI] [PubMed] [Google Scholar]
  5. Brock M. L., Shapiro D. J. Estrogen stabilizes vitellogenin mRNA against cytoplasmic degradation. Cell. 1983 Aug;34(1):207–214. doi: 10.1016/0092-8674(83)90151-4. [DOI] [PubMed] [Google Scholar]
  6. Burns A. T., Deeley R. G., Gordon J. I., Udell D. S., Mullinix K. P., Goldberger R. F. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1815–1819. doi: 10.1073/pnas.75.4.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cereghini S., Geoghegan T., Bergmann I., Brawerman G. Studies on the efficiency of translation and on the stability of actin messenger ribonucleic acid in mouse sarcoma ascites cells. Biochemistry. 1979 Jul 10;18(14):3153–3159. doi: 10.1021/bi00581a037. [DOI] [PubMed] [Google Scholar]
  8. Coffman R. L., Norris T. E., Koch A. L. Chain elongation rate of messenger and polypeptides in slowly growing Escherichia coli. J Mol Biol. 1971 Aug 28;60(1):1–19. doi: 10.1016/0022-2836(71)90442-6. [DOI] [PubMed] [Google Scholar]
  9. Craig N., Kelley D. E., Perry R. P. Lifetime of the messenger RNA's which code for ribosomal proteins in L-cells. Biochim Biophys Acta. 1971 Sep 24;246(3):493–498. doi: 10.1016/0005-2787(71)90786-6. [DOI] [PubMed] [Google Scholar]
  10. Craig N. The effects of inhibitors of RNA and DNA synthesis on protein synthesis and polysome levels in mouse L-cells. J Cell Physiol. 1973 Oct;82(2):133–150. doi: 10.1002/jcp.1040820202. [DOI] [PubMed] [Google Scholar]
  11. Ernst S. G., Oleinick N. L. Actinomycin D in Tetrahymena. Non-specific inhibition of RNA synthesis and primary and secondary effects on protein synthesis. Exp Cell Res. 1977 Dec;110(2):363–373. doi: 10.1016/0014-4827(77)90303-2. [DOI] [PubMed] [Google Scholar]
  12. Falkenthal S., Lengyel J. A. Structure, translation, and metabolism of the cytoplasmic copia ribonucleic acid of Drosophila melanogaster. Biochemistry. 1980 Dec 9;19(25):5842–5850. doi: 10.1021/bi00566a028. [DOI] [PubMed] [Google Scholar]
  13. Fyrberg E. A., Mahaffey J. W., Bond B. J., Davidson N. Transcripts of the six Drosophila actin genes accumulate in a stage- and tissue-specific manner. Cell. 1983 May;33(1):115–123. doi: 10.1016/0092-8674(83)90340-9. [DOI] [PubMed] [Google Scholar]
  14. Garrison J. C., Johnson M. L. A simplified method for computer analysis of autoradiograms from two-dimensional gels. J Biol Chem. 1982 Nov 10;257(21):13144–13149. [PubMed] [Google Scholar]
  15. Gausing K. Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates. J Mol Biol. 1977 Sep 25;115(3):335–354. doi: 10.1016/0022-2836(77)90158-9. [DOI] [PubMed] [Google Scholar]
  16. Grainger R. M., Wilt F. H. Incorporation of 13C, 15N-labeled nucleosides and measurement of RNA synthesis and turnover in sea urchin embryos. J Mol Biol. 1976 Jul 5;104(3):589–601. doi: 10.1016/0022-2836(76)90122-4. [DOI] [PubMed] [Google Scholar]
  17. Guyette W. A., Matusik R. J., Rosen J. M. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979 Aug;17(4):1013–1023. doi: 10.1016/0092-8674(79)90340-4. [DOI] [PubMed] [Google Scholar]
  18. Harpold M. M., Wilson M. C., Darnell J. E., Jr Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing. Mol Cell Biol. 1981 Feb;1(2):188–198. doi: 10.1128/mcb.1.2.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harris S. E., Rosen J. M., Means A. R., O'Malley B. W. Use of a specific probe for ovalbumin messenger RNA to quantitate estrogen-induced gene transcripts. Biochemistry. 1975 May 20;14(10):2072–2081. doi: 10.1021/bi00681a006. [DOI] [PubMed] [Google Scholar]
  20. Heintz N., Sive H. L., Roeder R. G. Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle. Mol Cell Biol. 1983 Apr;3(4):539–550. doi: 10.1128/mcb.3.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kafatos F. C. The cocoonase zymogen cells of silk moths: a model of terminal cell differentiation for specific protein synthesis. Curr Top Dev Biol. 1972;7:125–191. doi: 10.1016/s0070-2153(08)60071-x. [DOI] [PubMed] [Google Scholar]
  22. Kalfayan L., Wensink P. C. Developmental regulation of Drosophila alpha-tubulin genes. Cell. 1982 May;29(1):91–98. doi: 10.1016/0092-8674(82)90093-9. [DOI] [PubMed] [Google Scholar]
  23. Koch H., Friesen J. D. Individual messenger RNA half lives in Saccharomyces cerevisiae. Mol Gen Genet. 1979 Feb 26;170(2):129–135. doi: 10.1007/BF00337787. [DOI] [PubMed] [Google Scholar]
  24. Lengyel J. A., Penman S. Differential stability of cytoplasmic RNA in a Drosophila cell line. Dev Biol. 1977 Jun;57(2):243–253. doi: 10.1016/0012-1606(77)90212-3. [DOI] [PubMed] [Google Scholar]
  25. Lodish H. F., Small B. Different lifetimes of reticulocyte messenger RNA. Cell. 1976 Jan;7(1):59–65. doi: 10.1016/0092-8674(76)90255-5. [DOI] [PubMed] [Google Scholar]
  26. Margolskee J. P., Lodish H. F. Half-lives of messenger RNA species during growth and differentiation of Dictyostelium discoideum. Dev Biol. 1980 Jan;74(1):37–49. doi: 10.1016/0012-1606(80)90051-2. [DOI] [PubMed] [Google Scholar]
  27. Maxson R. E., Jr, Wilt F. H. Accumulation of the early histone messenger RNAs during the development of Strongylocentrotus purpuratus. Dev Biol. 1982 Dec;94(2):435–440. doi: 10.1016/0012-1606(82)90360-8. [DOI] [PubMed] [Google Scholar]
  28. Melvin W. T., Keir H. M. Onset of ribosome degradation during cessation of growth in BHK-21/C13 cells. Biochem J. 1978 Dec 15;176(3):933–941. doi: 10.1042/bj1760933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Natzle J. E., McCarthy B. J. Regulation of Drosophila alpha- and beta-tubulin genes during development. Dev Biol. 1984 Jul;104(1):187–198. doi: 10.1016/0012-1606(84)90047-2. [DOI] [PubMed] [Google Scholar]
  30. Palatnik C. M., Storti R. V., Capone A. K., Jacobson A. Messenger RNA stability in Dictyostelium discoideum: does poly(A) have a regulatory role? J Mol Biol. 1980 Aug 5;141(2):99–118. doi: 10.1016/0022-2836(80)90379-4. [DOI] [PubMed] [Google Scholar]
  31. Rozek C. E., Davidson N. Drosophila has one myosin heavy-chain gene with three developmentally regulated transcripts. Cell. 1983 Jan;32(1):23–34. doi: 10.1016/0092-8674(83)90493-2. [DOI] [PubMed] [Google Scholar]
  32. Rudland P. S., Weil S., Hunter A. R. Changes in RNA metabolism and accumulation of presumptive messenger RNA during transition from the growing to the quiescent state of cultured mouse fibroblasts. J Mol Biol. 1975 Aug 25;96(4):745–766. doi: 10.1016/0022-2836(75)90150-3. [DOI] [PubMed] [Google Scholar]
  33. Sanchez F., Tobin S. L., Rdest U., Zulauf E., McCarthy B. J. Two Drosophila actin genes in detail. Gene structure, protein structure and transcription during development. J Mol Biol. 1983 Feb 5;163(4):533–551. doi: 10.1016/0022-2836(83)90111-0. [DOI] [PubMed] [Google Scholar]
  34. Schwartz R. J. Control of glutamine synthetase synthesis in the embryonic chick neural retina. A caution in the use of actinomycin D. J Biol Chem. 1973 Sep 25;248(18):6426–6435. [PubMed] [Google Scholar]
  35. Singer R. H., Penman S. Messenger RNA in HeLa cells: kinetics of formation and decay. J Mol Biol. 1973 Aug 5;78(2):321–334. doi: 10.1016/0022-2836(73)90119-8. [DOI] [PubMed] [Google Scholar]
  36. Singer R. H., Penman S. Stability of HeLa cell mRNA in actinomycin. Nature. 1972 Nov 10;240(5376):100–102. doi: 10.1038/240100a0. [DOI] [PubMed] [Google Scholar]
  37. Steinberg R. A., Levinson B. B., Tomkins G. M. "Superinduction" of tyrosine aminotransferase by actinomycin D: a reevaluation. Cell. 1975 May;5(1):29–35. doi: 10.1016/0092-8674(75)90088-4. [DOI] [PubMed] [Google Scholar]
  38. Stiles C. D., Lee K. L., Kenney F. T. Differential degradation of messenger RNAs in mammalian cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2634–2638. doi: 10.1073/pnas.73.8.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wahli W., Wyler T., Weber R., Ryffel G. U. Size, complexity and abundance of a specific poly(A)-containing RNA of liver from male Xenopus induced to vitellogenin synthesis by estrogen. Eur J Biochem. 1976 Jul 15;66(3):457–465. doi: 10.1111/j.1432-1033.1976.tb10570.x. [DOI] [PubMed] [Google Scholar]
  40. Weinberg E. S., Hendricks M. B., Hemminki K., Kuwabara P. E., Farrelly L. A. Timing and rates of synthesis of early histone mRNA in the embryo of Strongylocentrotus purpuratus. Dev Biol. 1983 Jul;98(1):117–129. doi: 10.1016/0012-1606(83)90340-8. [DOI] [PubMed] [Google Scholar]
  41. Wilson M. C., Sawicki S. G., White P. A., Darnell J. E., Jr A correlation between the rate of poly(A) shortening and half-life of messenger RNA in adenovirus transformed cells. J Mol Biol. 1978 Nov 25;126(1):23–36. doi: 10.1016/0022-2836(78)90277-2. [DOI] [PubMed] [Google Scholar]
  42. Winkles J. A., Grainger R. M. Polyadenylation state of abundant mRNAs during Drosophila development. Dev Biol. 1985 Jul;110(1):259–263. doi: 10.1016/0012-1606(85)90083-1. [DOI] [PubMed] [Google Scholar]
  43. Winkles J. A., Phillips W. H., Grainger R. M. Drosophila ribosomal RNA stability increases during slow growth conditions. J Biol Chem. 1985 Jun 25;260(12):7716–7720. [PubMed] [Google Scholar]
  44. Woodland H. R., Flynn J. M., Wyllie A. J. Utilization of stored mRNA in Xenopus embryos and its replacement by newly synthesized transcripts: histone H1 synthesis using interspecies hybrids. Cell. 1979 Sep;18(1):165–171. doi: 10.1016/0092-8674(79)90365-9. [DOI] [PubMed] [Google Scholar]
  45. Woodland H. R., Wilt F. H. The functional stability of sea urchin histone mRNA injected into oocytes of Xenopus laevis. Dev Biol. 1980 Mar;75(1):199–213. doi: 10.1016/0012-1606(80)90155-4. [DOI] [PubMed] [Google Scholar]
  46. Woodland H. R., Wilt F. H. The stability and translation of sea urchin histone messenger RNA molecules injected into Xenopus laevis eggs and developing embryos. Dev Biol. 1980 Mar;75(1):214–221. doi: 10.1016/0012-1606(80)90156-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES