Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1990–1998. doi: 10.1083/jcb.101.5.1990

Immunolocalization of a neuronal growth-dependent membrane glycoprotein

PMCID: PMC2113966  PMID: 3902859

Abstract

Monoclonal antibody (mAb) 5B4 recognizes in the rat a large, developmentally regulated membrane glycoprotein. The larger form of this antigen (185-255 kD) occurs in the developing nervous system and is present in membranes of nerve growth cones, as determined by analysis of a growth cone particle fraction. An immunochemical characterization of this antigen and of a smaller form (140 kD), sparsely present in the mature nervous system, has been described (Ellis, L., I. Wallis, E. Abreu, and K. H. Pfenninger, 1985, J. Cell. Biol., 101:1977-1989). The present paper reports on the localization by immunofluorescence of 5B4 antigen in cultured cortical neurons, developing spinal cord, and the mature olfactory system. In culture, mAb 5B4 stains only neurons; it is sparsely present in neurons at the onset of sprouting while, during sprouting, it appears to be concentrated at the growth cone and in regions of the perikaryon. In the developing spinal cord, 5B4 labeling is faintly detectable on embryonic day 11 but is intense on fetal day 13. At this stage, the fluorescence is observed in regions of the cord where axonal growth is occurring, while areas composed of dividing or migrating neural cells are nonfluorescent. With maturation of the spinal cord, this basic pattern of fluorescence persists initially, but the staining intensity decreases dramatically. In the adult, faint fluorescence is detectable only in gray matter, presumably indicating the presence of the 140 kD rather than the fetal antigen. The only known structure of the adult mammalian nervous system where axonal growth normally occurs is the olfactory nerve. mAb 5B4 intensely stains a variable proportion of olfactory axons in the mucosa as well as in the olfactory bulb. Based on both immunochemical and immunofluorescence data, the 5B4 antigen of 185-255 kD is associated specifically with growing neurons, i.e., neurons that are generating neurites.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chuong C. M., McClain D. A., Streit P., Edelman G. M. Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4234–4238. doi: 10.1073/pnas.79.13.4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ellis L., Wallis I., Abreu E., Pfenninger K. H. Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons. J Cell Biol. 1985 Nov;101(5 Pt 1):1977–1989. doi: 10.1083/jcb.101.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Finne J., Finne U., Deagostini-Bazin H., Goridis C. Occurrence of alpha 2-8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun. 1983 Apr 29;112(2):482–487. doi: 10.1016/0006-291x(83)91490-0. [DOI] [PubMed] [Google Scholar]
  5. Hirn M., Ghandour M. S., Deagostini-Bazin H., Goridis C. Molecular heterogeneity and structural evolution during cerebellar ontogeny detected by monoclonal antibody of the mouse cell surface antigen BSP-2. Brain Res. 1983 Apr 11;265(1):87–100. doi: 10.1016/0006-8993(83)91337-9. [DOI] [PubMed] [Google Scholar]
  6. Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
  7. Jørgensen O. S., Delouvée A., Thiery J. P., Edelman G. M. The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia. FEBS Lett. 1980 Feb 25;111(1):39–42. doi: 10.1016/0014-5793(80)80756-3. [DOI] [PubMed] [Google Scholar]
  8. Jørgensen O. S., Møller M. Immunocytochemical demonstration of the D2 protein in the presynaptic complex. Brain Res. 1980 Aug 4;194(2):419–429. doi: 10.1016/0006-8993(80)91222-6. [DOI] [PubMed] [Google Scholar]
  9. Jørgensen O. S. Neuronal membrane D2-protein during rat brain ontogeny. J Neurochem. 1981 Oct;37(4):939–946. doi: 10.1111/j.1471-4159.1981.tb04481.x. [DOI] [PubMed] [Google Scholar]
  10. Nornes H. O., Das G. D. Temporal pattern of neurogenesis in spinal cord of rat. I. An autoradiographic study--time and sites of origin and migration and settling patterns of neuroblasts. Brain Res. 1974 Jun 14;73(1):121–138. doi: 10.1016/0006-8993(74)91011-7. [DOI] [PubMed] [Google Scholar]
  11. Rothbard J. B., Brackenbury R., Cunningham B. A., Edelman G. M. Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J Biol Chem. 1982 Sep 25;257(18):11064–11069. [PubMed] [Google Scholar]
  12. Rougon G., Deagostini-Bazin H., Hirn M., Goridis C. Tissue- and developmental stage-specific forms of a neural cell surface antigen linked to differences in glycosylation of a common polypeptide. EMBO J. 1982;1(10):1239–1244. doi: 10.1002/j.1460-2075.1982.tb00019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thiery J. P., Duband J. L., Rutishauser U., Edelman G. M. Cell adhesion molecules in early chicken embryogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6737–6741. doi: 10.1073/pnas.79.21.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES