Abstract
We have isolated a nucleus-basal body complex from Chlamydomonas reinhardtii. The complex is strongly immunoreactive to an antibody generated against a major protein constituent of isolated Tetraselmis striata flagellar roots (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, J. Cell Biol., 99:962-970). Electrophoretic and immunoelectrophoretic analysis indicates that, like the Tetraselmis protein, the Chlamydomonas antigen consists of two acidic isoforms of approximately 20 kD. Indirect immunofluorescent staining of nucleus- basal body complexes reveals two major fibers in the connector region, one between each basal body and the nucleus. The nucleus is also strongly immunoreactive, with staining radiating around much of the nucleus from a region of greatest concentration at the connector pole. Calcium treatment causes shortening of the connector fibers and also movement of nuclear DNA towards the connector pole. Electron microscopic observation of negatively stained nucleus-basal body complexes reveals a cluster of approximately 6-nm filaments, suspected to represent the connector, between the basal bodies and nuclei. A mutant with a variable number of flagella, vfl-2-220, is defective with respect to the nucleus-basal body association. This observation encourages us to speculate that the nucleus-basal body union is important for accurate basal body localization within the cell and/or for accurate segregation of parental and daughter basal bodies at cell division. A physical association between nuclei and basal bodies or centrioles has been observed in a variety of algal, protozoan, and metazoan cells, although the nature of the association, in terms of both structure and function, has been obscure. We believe it likely that fibrous connectors homologous to those described here for Chlamydomonas are general features of centriole-bearing eucaryotic cells.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. M., Wright R. L., Jarvik J. W. Defective temporal and spatial control of flagellar assembly in a mutant of Chlamydomonas reinhardtii with variable flagellar number. J Cell Biol. 1985 Mar;100(3):955–964. doi: 10.1083/jcb.100.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albrecht-Buehler G., Bushnell A. The orientation of centrioles in migrating 3T3 cells. Exp Cell Res. 1979 Apr;120(1):111–118. doi: 10.1016/0014-4827(79)90542-1. [DOI] [PubMed] [Google Scholar]
- Albrecht-Buehler G. Does the geometric design of centrioles imply their function? Cell Motil. 1981;1(2):237–245. doi: 10.1002/cm.970010206. [DOI] [PubMed] [Google Scholar]
- Bahr G. F., Engler W. F. Association of centrioles and chromosomes observed in preparations of whole-mounted human chromosomes. Chromosoma. 1977 Oct 17;63(4):295–303. doi: 10.1007/BF00399492. [DOI] [PubMed] [Google Scholar]
- Berns M. W., Richardson S. M. Continuation of mitosis after selective laser microbeam destruction of the centriolar region. J Cell Biol. 1977 Dec;75(3):977–982. doi: 10.1083/jcb.75.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornens M. Is the centriole bound to the nuclear membrane? Nature. 1977 Nov 3;270(5632):80–82. doi: 10.1038/270080a0. [DOI] [PubMed] [Google Scholar]
- Bouck G. B., Brown D. L. Microtubule biogenesis and cell shape in Ochromonas. I. The distribution of cytoplasmic and mitotic microtubules. J Cell Biol. 1973 Feb;56(2):340–359. doi: 10.1083/jcb.56.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavalier-Smith T. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci. 1974 Dec;16(3):529–556. doi: 10.1242/jcs.16.3.529. [DOI] [PubMed] [Google Scholar]
- Coss R. A. Mitosis in Chlamydomonas reinhardtii basal bodies and the mitotic apparatus. J Cell Biol. 1974 Oct;63(1):325–329. doi: 10.1083/jcb.63.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dingle A. D., Larson D. E. Structure and protein composition of the striated flagellar rootlets of some protists. Biosystems. 1981;14(3-4):345–358. doi: 10.1016/0303-2647(81)90041-1. [DOI] [PubMed] [Google Scholar]
- Fais D., Nadezhdina E. S., Chentsov YuS Evidence for the nucleus-centriole association in living cells obtained by ultracentrifugation. Eur J Cell Biol. 1984 Mar;33(2):190–196. [PubMed] [Google Scholar]
- Goodenough U. W., StClair H. S. BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J Cell Biol. 1975 Sep;66(3):480–491. doi: 10.1083/jcb.66.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould R. R. The basal bodies of Chlamydomonas reinhardtii. Formation from probasal bodies, isolation, and partial characterization. J Cell Biol. 1975 Apr;65(1):65–74. doi: 10.1083/jcb.65.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang B., Ramanis Z., Dutcher S. K., Luck D. J. Uniflagellar mutants of Chlamydomonas: evidence for the role of basal bodies in transmission of positional information. Cell. 1982 Jul;29(3):745–753. doi: 10.1016/0092-8674(82)90436-6. [DOI] [PubMed] [Google Scholar]
- Hyams J. S., Borisy G. G. Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Science. 1975 Sep 12;189(4206):891–893. doi: 10.1126/science.1098148. [DOI] [PubMed] [Google Scholar]
- Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz K. R., McLean R. J. Rhizoplast and rootlet system of the flagellar apparatus of Chlamydomonas moewusii. J Cell Sci. 1979 Oct;39:373–381. doi: 10.1242/jcs.39.1.373. [DOI] [PubMed] [Google Scholar]
- Koonce M. P., Cloney R. A., Berns M. W. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility. J Cell Biol. 1984 Jun;98(6):1999–2010. doi: 10.1083/jcb.98.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuchka M. R., Jarvik J. W. Analysis of flagellar size control using a mutant of Chlamydomonas reinhardtii with a variable number of flagella. J Cell Biol. 1982 Jan;92(1):170–175. doi: 10.1083/jcb.92.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuriyama R., Borisy G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol. 1981 Dec;91(3 Pt 1):814–821. doi: 10.1083/jcb.91.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lefebvre P. A., Nordstrom S. A., Moulder J. E., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol. 1978 Jul;78(1):8–27. doi: 10.1083/jcb.78.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazia D. Centrosomes and mitotic poles. Exp Cell Res. 1984 Jul;153(1):1–15. doi: 10.1016/0014-4827(84)90442-7. [DOI] [PubMed] [Google Scholar]
- Melkonian M. Ultrastructural aspects of basal body associated fibrous structures in green algae: a critical review. Biosystems. 1980;12(1-2):85–104. doi: 10.1016/0303-2647(80)90040-4. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- O'Kelly C. J., Floyd G. L. Flagellar apparatus absolute orientations and the phylogeny of the green algae. Biosystems. 1983;16(3-4):227–251. doi: 10.1016/0303-2647(83)90007-2. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. The evolution of mitosis and the eukaryotic condition. Biosystems. 1974 Jul;6(1):37–48. doi: 10.1016/0303-2647(74)90009-4. [DOI] [PubMed] [Google Scholar]
- Ring D., Hubble R., Kirschner M. Mitosis in a cell with multiple centrioles. J Cell Biol. 1982 Sep;94(3):549–556. doi: 10.1083/jcb.94.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roobol A., Havercroft J. C., Gull K. Microtubule nucleation by the isolated microtubule-organizing centre of Physarum polycephalum myxamoebae. J Cell Sci. 1982 Jun;55:365–381. doi: 10.1242/jcs.55.1.365. [DOI] [PubMed] [Google Scholar]
- SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
- Salisbury J. L., Baron A., Surek B., Melkonian M. Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol. 1984 Sep;99(3):962–970. doi: 10.1083/jcb.99.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlösser U. G., Sachs H., Robinson D. G. Isolation of protoplasts by means of a "species-specific" autolysine in Chlamydomonas. Protoplasma. 1976;88(1):51–64. doi: 10.1007/BF01280359. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Lopata M. A., Kirschner M. W. Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell. 1979 Feb;16(2):253–263. doi: 10.1016/0092-8674(79)90003-5. [DOI] [PubMed] [Google Scholar]
- Wright R. L., Chojnacki B., Jarvik J. W. Abnormal basal-body number, location, and orientation in a striated fiber-defective mutant of Chlamydomonas reinhardtii. J Cell Biol. 1983 Jun;96(6):1697–1707. doi: 10.1083/jcb.96.6.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
