Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1741–1748. doi: 10.1083/jcb.101.5.1741

Gap junction structures after experimental alteration of junctional channel conductance

PMCID: PMC2113972  PMID: 2414303

Abstract

Gap junctions are known to present a variety of different morphologies in electron micrographs and x-ray diffraction patterns. This variation in structure is not only seen between gap junctions in different tissues and organisms, but also within a given tissue. In an attempt to understand the physiological meaning of some aspects of this variability, gap junction structure was studied following experimental manipulation of junctional channel conductance. Both physiological and morphological experiments were performed on gap junctions joining stage 20-23 chick embryo lens epithelial cells. Channel conductance was experimentally altered by using five different experimental manipulations, and assayed for conductance changes by observing the intercellular diffusion of Lucifer Yellow CH. All structural measurements were made on electron micrographs of freeze-fracture replicas after quick-freezing of specimens from the living state; for comparison, aldehyde-fixed specimens were measured as well. Analysis of the data generated as a result of this study revealed no common statistically significant changes in the intrajunctional packing of connexons in the membrane plane as a result of experimental alteration of junctional channel conductance, although some of the experimental manipulations used to alter junctional conductance did produce significant structural changes. Aldehyde fixation caused a dramatic condensation of connexon packing, a result not observed with any of the five experimental uncoupling conditions over the 40-min time course of the experiments.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashraf M., Halverson C. Ultrastructural modifications of nexuses (gap junctions) during early myocardial ischemia. J Mol Cell Cardiol. 1978 Mar;10(3):263–269. doi: 10.1016/0022-2828(78)90348-6. [DOI] [PubMed] [Google Scholar]
  2. Azarnia R., Larsen W. J., Loewenstein W. R. The membrane junctions in communicating and noncommunicating cells, their hybrids, and segregants. Proc Natl Acad Sci U S A. 1974 Mar;71(3):880–884. doi: 10.1073/pnas.71.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldwin K. M. Cardiac gap junction configuration after an uncoupling treatment as a function of time. J Cell Biol. 1979 Jul;82(1):66–75. doi: 10.1083/jcb.82.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benedetti E. L., Dunia I., Bentzel C. J., Vermorken A. J., Kibbelaar M., Bloemendal H. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Biochim Biophys Acta. 1976 Dec 14;457(3-4):353–384. doi: 10.1016/0304-4157(76)90004-6. [DOI] [PubMed] [Google Scholar]
  6. Benedetti E. L., Emmelot P. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J Cell Biol. 1968 Jul;38(1):15–24. doi: 10.1083/jcb.38.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bennett M. V., Spira M. E., Pappas G. D. Properties of electrotonic junctions between embryonic cells of Fundulus. Dev Biol. 1972 Dec;29(4):419–435. doi: 10.1016/0012-1606(72)90082-6. [DOI] [PubMed] [Google Scholar]
  8. Bernardini G., Peracchia C. Gap junction crystallization in lens fibers after an increase in cell calcium. Invest Ophthalmol Vis Sci. 1981 Aug;21(2):291–299. [PubMed] [Google Scholar]
  9. Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chalcroft J. P., Bullivant S. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol. 1970 Oct;47(1):49–60. doi: 10.1083/jcb.47.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Délèze J., Hervé J. C. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart. J Membr Biol. 1983;74(3):203–215. doi: 10.1007/BF02332124. [DOI] [PubMed] [Google Scholar]
  13. Flagg-Newton J., Loewenstein W. R. Experimental depression of junctional membrane permeability in mammalian cell culture. A study with tracer molecules in the 300 to 800 Dalton range. J Membr Biol. 1979 Oct 5;50(1):65–100. doi: 10.1007/BF01868788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  15. Goodenough D. A., Dick J. S., 2nd, Lyons J. E. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980 Aug;86(2):576–589. doi: 10.1083/jcb.86.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goodenough D. A., Gilula N. B. The splitting of hepatocyte gap junctions and zonulae occludentes with hypertonic disaccharides. J Cell Biol. 1974 Jun;61(3):575–590. doi: 10.1083/jcb.61.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Green C. R., Severs N. J. Gap junction connexon configuration in rapidly frozen myocardium and isolated intercalated disks. J Cell Biol. 1984 Aug;99(2):453–463. doi: 10.1083/jcb.99.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hanna R. B., Pappas G. D., Bennett M. V. The fine structure of identified electrotonic synapses following increased coupling resistance. Cell Tissue Res. 1984;235(2):243–249. doi: 10.1007/BF00217847. [DOI] [PubMed] [Google Scholar]
  20. Hertzberg E. L., Spray D. C., Bennett M. V. Reduction of gap junctional conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2412–2416. doi: 10.1073/pnas.82.8.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hirokawa N., Heuser J. The inside and outside of gap-junction membranes visualized by deep etching. Cell. 1982 Sep;30(2):395–406. doi: 10.1016/0092-8674(82)90237-9. [DOI] [PubMed] [Google Scholar]
  23. Johnston M. F., Ramón F. Electrotonic coupling in internally perfused crayfish segmented axons. J Physiol. 1981 Aug;317:509–518. doi: 10.1113/jphysiol.1981.sp013840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnston M. F., Simon S. A., Ramón F. Interaction of anaesthetics with electrical synapses. Nature. 1980 Jul 31;286(5772):498–500. doi: 10.1038/286498a0. [DOI] [PubMed] [Google Scholar]
  25. Kistler J., Bullivant S. The connexon order in isolated lens gap junctions. J Ultrastruct Res. 1980 Jul;72(1):27–38. doi: 10.1016/s0022-5320(80)90132-x. [DOI] [PubMed] [Google Scholar]
  26. Kuszak J. R., Rae J. L., Pauli B. U., Weinstein R. S. Rotary replication of lens gap junction. J Ultrastruct Res. 1982 Nov;81(2):249–256. doi: 10.1016/s0022-5320(82)90080-6. [DOI] [PubMed] [Google Scholar]
  27. Lee W. M., Cran D. G., Lane N. J. Carbon dioxide induced disassembly of gap-junctional plaques. J Cell Sci. 1982 Oct;57:215–228. doi: 10.1242/jcs.57.1.215. [DOI] [PubMed] [Google Scholar]
  28. Loewenstein W. R., Nakas M., Socolar S. J. Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. J Gen Physiol. 1967 Aug;50(7):1865–1891. doi: 10.1085/jgp.50.7.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meda P., Findlay I., Kolod E., Orci L., Petersen O. H. Short and reversible uncoupling evokes little change in the gap junctions of pancreatic acinar cells. J Ultrastruct Res. 1983 Apr;83(1):69–84. doi: 10.1016/s0022-5320(83)90066-7. [DOI] [PubMed] [Google Scholar]
  31. Nagano T., Toyama Y., Suzuki F. Further observations on the Sertoli cell junctions of the mouse testis after metal contract freeze-fracture, and comparisons with cellular junctions of other epithelial cells. Am J Anat. 1982 Jan;163(1):47–58. doi: 10.1002/aja.1001630104. [DOI] [PubMed] [Google Scholar]
  32. Nakas M., Higashino S., Loewenstein W. R. Uncoupling of an epithelial cell membrane junction by calcium-ion removal. Science. 1966 Jan 7;151(3706):89–91. doi: 10.1126/science.151.3706.89. [DOI] [PubMed] [Google Scholar]
  33. Page E., Karrison T., Upshaw-Earley J. Freeze-fractured cardiac gap junctions: structural analysis by three methods. Am J Physiol. 1983 Apr;244(4):H525–H539. doi: 10.1152/ajpheart.1983.244.4.H525. [DOI] [PubMed] [Google Scholar]
  34. Pappas G. D., Asada Y., Bennett M. V. Morphological correlates of increased coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):173–188. doi: 10.1083/jcb.49.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Payton B. W., Bennett M. V., Pappas G. D. Temperature-dependence of resistance at an electrotonic synapse. Science. 1969 Aug 8;165(3893):594–597. doi: 10.1126/science.165.3893.594. [DOI] [PubMed] [Google Scholar]
  36. Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peracchia C. Gap junctions. Structural changes after uncoupling procedures. J Cell Biol. 1977 Mar;72(3):628–641. doi: 10.1083/jcb.72.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peracchia C. Low resistance junctions in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining. J Cell Biol. 1973 Apr;57(1):54–65. doi: 10.1083/jcb.57.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of divalent cations. J Cell Biol. 1980 Dec;87(3 Pt 1):708–718. doi: 10.1083/jcb.87.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Politoff A. L., Socolar S. J., Loewenstein W. R. Permeability of a cell membrane junction. Dependence on energy metabolism. J Gen Physiol. 1969 Apr;53(4):498–515. doi: 10.1085/jgp.53.4.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Raviola E., Goodenough D. A., Raviola G. Structure of rapidly frozen gap junctions. J Cell Biol. 1980 Oct;87(1):273–279. doi: 10.1083/jcb.87.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  45. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Revel J. P., Yee A. G., Hudspeth A. J. Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2924–2927. doi: 10.1073/pnas.68.12.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rose B., Loewenstein W. R. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature. 1975 Mar 20;254(5497):250–252. doi: 10.1038/254250a0. [DOI] [PubMed] [Google Scholar]
  48. Schuetze S. M., Goodenough D. A. Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2 treatment with development. J Cell Biol. 1982 Mar;92(3):694–705. doi: 10.1083/jcb.92.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shibata Y., Nakata K., Page E. Ultrastructural changes during development of gap junctions in rabbit left ventricular myocardial cells. J Ultrastruct Res. 1980 Jun;71(3):258–271. doi: 10.1016/s0022-5320(80)90078-7. [DOI] [PubMed] [Google Scholar]
  50. Shibata Y., Page E. Gap junctional structure in intact and cut sheep cardiac Purkinje fibers: a freeze-fracture study of Ca2+-induced resealing. J Ultrastruct Res. 1981 May;75(2):195–204. doi: 10.1016/s0022-5320(81)80135-9. [DOI] [PubMed] [Google Scholar]
  51. Sikerwar S., Malhotra S. Structural correlates of glutaraldehyde induced uncoupling in mouse liver gap junctions. Eur J Cell Biol. 1981 Oct;25(2):319–323. [PubMed] [Google Scholar]
  52. Spray D. C., White R. L., de Carvalho A. C., Harris A. L., Bennett M. V. Gating of gap junction channels. Biophys J. 1984 Jan;45(1):219–230. doi: 10.1016/S0006-3495(84)84150-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
  54. Turin L., Warner A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature. 1977 Nov 3;270(5632):56–57. doi: 10.1038/270056a0. [DOI] [PubMed] [Google Scholar]
  55. Warner A. E., Guthrie S. C., Gilula N. B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):127–131. doi: 10.1038/311127a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES