Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1913–1920. doi: 10.1083/jcb.101.5.1913

Studies on the mechanism of retinoid-induced pattern duplications in the early chick limb bud: temporal and spatial aspects

PMCID: PMC2113976  PMID: 4055899

Abstract

All-trans-retinoic acid causes striking digit pattern changes when it is continuously released from a bead implanted in the anterior margin of an early chick wing bud. In addition to the normal set of digits (234), extra digits form in a mirror-symmetrical arrangement, creating digit patterns such as a 432234. These retinoic acid-induced pattern duplications closely mimic those found after grafts of polarizing region cells to the same positions with regard to dose-response, timing, and positional effects. To elucidate the mechanism by which retinoic acid induces these pattern duplications, we have studied the temporal and spatial distribution of all-trans-retinoic acid and its potent analogue TTNPB in these limb buds. We find that the induction process is biphasic: there is an 8-h lag phase followed by a 6-h duplication phase, during which additional digits are irreversibly specified in the sequence digit 2, digit 3, digit 4. On average, formation of each digit seems to require between 1 and 2 h. The tissue concentrations, metabolic pattern, and spatial distribution of all- trans-retinoic acid and TTNPB in the limb rapidly reach a steady state, in which the continuous release of the retinoid is balanced by loss from metabolism and blood circulation. Pulse-chase experiments reveal that the half-time of clearance from the bud is 20 min for all-trans- retinoic acid and 80 min for TTNPB. Manipulations that change the experimentally induced steep concentration gradient of TTNPB suggest that a graded distribution of retinoid concentrations across the limb is required during the duplication phase to induce changes in the digit pattern. The extensive similarities between results obtained with retinoids and with polarizing region grafts raise the possibility that retinoic acid serves as a natural "morphogen" in the limb.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eckert R. L., Green H. Cloning of cDNAs specifying vitamin A-responsive human keratins. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4321–4325. doi: 10.1073/pnas.81.14.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eichele G., Tickle C., Alberts B. M. Microcontrolled release of biologically active compounds in chick embryos: beads of 200-microns diameter for the local release of retinoids. Anal Biochem. 1984 Nov 1;142(2):542–555. doi: 10.1016/0003-2697(84)90504-9. [DOI] [PubMed] [Google Scholar]
  3. Fjose A., McGinnis W. J., Gehring W. J. Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature. 1985 Jan 24;313(6000):284–289. doi: 10.1038/313284a0. [DOI] [PubMed] [Google Scholar]
  4. Hinchliffe J. R., Garcia-Porrero J. A., Gumpel-Pinot M. The role of the zone of polarizing activity in controlling the differentiation of the apical mesenchyme of the chick wing-bud: histochemical techniques in the analysis of a developmental problem. Histochem J. 1981 Jul;13(4):643–658. doi: 10.1007/BF01002716. [DOI] [PubMed] [Google Scholar]
  5. Iten L. E., Murphy D. J. Pattern regulation in the embryonic chick limb: supernumerary limb formation with anterior (non-ZPA) limb bud tissue. Dev Biol. 1980 Mar 15;75(2):373–385. doi: 10.1016/0012-1606(80)90170-0. [DOI] [PubMed] [Google Scholar]
  6. Maden M. The effect of vitamin A on limb regeneration in Rana temporaria. Dev Biol. 1983 Aug;98(2):409–416. doi: 10.1016/0012-1606(83)90370-6. [DOI] [PubMed] [Google Scholar]
  7. Maden M. Vitamin A and pattern formation in the regenerating limb. Nature. 1982 Feb 25;295(5851):672–675. doi: 10.1038/295672a0. [DOI] [PubMed] [Google Scholar]
  8. Mummery C. L., van den Brink C. E., van der Saag P. T., de Laat S. W. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells. Dev Biol. 1984 Aug;104(2):297–307. doi: 10.1016/0012-1606(84)90085-x. [DOI] [PubMed] [Google Scholar]
  9. Ogiso Y., Kume A., Nishimune Y., Matsushiro A. Reversible and irreversible stages in the transition of cell surface marker during the differentiation of pluripotent teratocarcinoma cell induced with retinoic acid. Exp Cell Res. 1982 Feb;137(2):365–372. doi: 10.1016/0014-4827(82)90037-4. [DOI] [PubMed] [Google Scholar]
  10. Smith J. C. The time required for positional signalling in the chick wing bud. J Embryol Exp Morphol. 1980 Dec;60:321–328. [PubMed] [Google Scholar]
  11. Strickland S., Breitman T. R., Frickel F., Nürrenbach A., Hädicke E., Sporn M. B. Structure-activity relationships of a new series of retinoidal benzoic acid derivatives as measured by induction of differentiation of murine F9 teratocarcinoma cells and human HL-60 promyelocytic leukemia cells. Cancer Res. 1983 Nov;43(11):5268–5272. [PubMed] [Google Scholar]
  12. Summerbell D., Harvey F. Vitamin A and the control of pattern in developing limbs. Prog Clin Biol Res. 1983;110(Pt A):109–118. [PubMed] [Google Scholar]
  13. Summerbell D. Regulation of the deficiencies along the proximal distal axis of the chick wing-bud: a quantitative analysis. J Embryol Exp Morphol. 1977 Oct;41:137–159. [PubMed] [Google Scholar]
  14. Summerbell D. The effect of local application of retinoic acid to the anterior margin of the developing chick limb. J Embryol Exp Morphol. 1983 Dec;78:269–289. [PubMed] [Google Scholar]
  15. Thiele C. J., Reynolds C. P., Israel M. A. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. 1985 Jan 31-Feb 6Nature. 313(6001):404–406. doi: 10.1038/313404a0. [DOI] [PubMed] [Google Scholar]
  16. Thoms S. D., Stocum D. L. Retinoic acid-induced pattern duplication in regenerating urodele limbs. Dev Biol. 1984 Jun;103(2):319–328. doi: 10.1016/0012-1606(84)90320-8. [DOI] [PubMed] [Google Scholar]
  17. Tickle C., Alberts B., Wolpert L., Lee J. Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature. 1982 Apr 8;296(5857):564–566. doi: 10.1038/296564a0. [DOI] [PubMed] [Google Scholar]
  18. Tickle C., Lee J., Eichele G. A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development. Dev Biol. 1985 May;109(1):82–95. doi: 10.1016/0012-1606(85)90348-3. [DOI] [PubMed] [Google Scholar]
  19. Tickle C., Summerbell D., Wolpert L. Positional signalling and specification of digits in chick limb morphogenesis. Nature. 1975 Mar 20;254(5497):199–202. doi: 10.1038/254199a0. [DOI] [PubMed] [Google Scholar]
  20. Tickle C. The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature. 1981 Jan 22;289(5795):295–298. doi: 10.1038/289295a0. [DOI] [PubMed] [Google Scholar]
  21. Wang S. Y., Gudas L. J. Isolation of cDNA clones specific for collagen IV and laminin from mouse teratocarcinoma cells. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5880–5884. doi: 10.1073/pnas.80.19.5880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wolpert L. Pattern formation in biological development. Sci Am. 1978 Oct;239(4):154–164. doi: 10.1038/scientificamerican1078-154. [DOI] [PubMed] [Google Scholar]
  23. Wolpert L. Positional information and pattern formation. Curr Top Dev Biol. 1971;6(6):183–224. doi: 10.1016/s0070-2153(08)60641-9. [DOI] [PubMed] [Google Scholar]
  24. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol. 1969 Oct;25(1):1–47. doi: 10.1016/s0022-5193(69)80016-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES