Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1897–1902. doi: 10.1083/jcb.101.5.1897

Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments

PMCID: PMC2113978  PMID: 3840488

Abstract

In smooth muscles there is no organized sarcomere structure wherein the relative movement of myosin filaments and actin filaments has been documented during contraction. Using the recently developed in vitro assay for myosin-coated bead movement (Sheetz, M.P., and J.A. Spudich, 1983, Nature (Lond.)., 303:31-35), we were able to quantitate the rate of movement of both phosphorylated and unphosphorylated smooth muscle myosin on ordered actin filaments derived from the giant alga, Nitella. We found that movement of turkey gizzard smooth muscle myosin on actin filaments depended upon the phosphorylation of the 20-kD myosin light chains. About 95% of the beads coated with phosphorylated myosin moved at velocities between 0.15 and 0.4 micron/s, depending upon the preparation. With unphosphorylated myosin, only 3% of the beads moved and then at a velocity of only approximately 0.01-0.04 micron/s. The effects of phosphorylation were fully reversible after dephosphorylation with a phosphatase prepared from smooth muscle. Analysis of the velocity of movement as a function of phosphorylation level indicated that phosphorylation of both heads of a myosin molecule was required for movement and that unphosphorylated myosin appears to decrease the rate of movement of phosphorylated myosin. Mixing of phosphorylated smooth muscle myosin with skeletal muscle myosin which moves at 2 microns/s resulted in a decreased rate of bead movement, suggesting that the more slowly cycling smooth muscle myosin is primarily determining the velocity of movement in such mixtures.

Full Text

The Full Text of this article is available as a PDF (773.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
  3. Barron J. T., Bárány M., Bárány K., Storti R. V. Reversible phosphorylation and dephosphorylation of the 20,000-dalton light chain of myosin during the contraction-relaxation-contraction cycle of arterial smooth muscle. J Biol Chem. 1980 Jul 10;255(13):6238–6244. [PubMed] [Google Scholar]
  4. Chacko S., Conti M. A., Adelstein R. S. Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci U S A. 1977 Jan;74(1):129–133. doi: 10.1073/pnas.74.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chacko S., Rosenfeld A. Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc Natl Acad Sci U S A. 1982 Jan;79(2):292–296. doi: 10.1073/pnas.79.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dillon P. F., Aksoy M. O., Driska S. P., Murphy R. A. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981 Jan 30;211(4481):495–497. doi: 10.1126/science.6893872. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  8. Fay F. S., Fujiwara K., Rees D. D., Fogarty K. E. Distribution of alpha-actinin in single isolated smooth muscle cells. J Cell Biol. 1983 Mar;96(3):783–795. doi: 10.1083/jcb.96.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerthoffer W. T., Murphy R. A. Ca2+, myosin phosphorylation, and relaxation of arterial smooth muscle. Am J Physiol. 1983 Sep;245(3):C271–C277. doi: 10.1152/ajpcell.1983.245.3.C271. [DOI] [PubMed] [Google Scholar]
  10. Ikebe M., Aiba T., Onishi H., Watanabe S. Calcium sensitivity of contractile proteins from chicken gizzard muscle. J Biochem. 1978 Jun;83(6):1643–1655. doi: 10.1093/oxfordjournals.jbchem.a132077. [DOI] [PubMed] [Google Scholar]
  11. Klee C. B. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry. 1977 Mar 8;16(5):1017–1024. doi: 10.1021/bi00624a033. [DOI] [PubMed] [Google Scholar]
  12. Leavis P. C., Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem. 1984;16(3):235–305. doi: 10.3109/10409238409108717. [DOI] [PubMed] [Google Scholar]
  13. Marston S. B., Taylor E. W. Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. J Mol Biol. 1980 Jun 5;139(4):573–600. doi: 10.1016/0022-2836(80)90050-9. [DOI] [PubMed] [Google Scholar]
  14. Moss R. L. The effect of calcium on the maximum velocity of shortening in skinned skeletal muscle fibres of the rabbit. J Muscle Res Cell Motil. 1982 Sep;3(3):295–311. doi: 10.1007/BF00713039. [DOI] [PubMed] [Google Scholar]
  15. Nag S., Seidel J. C. Dependence on Ca2+ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low concentrations of Mg2+. J Biol Chem. 1983 May 25;258(10):6444–6449. [PubMed] [Google Scholar]
  16. Ngai P. K., Walsh M. P. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem. 1984 Nov 25;259(22):13656–13659. [PubMed] [Google Scholar]
  17. Persechini A., Hartshorne D. J. Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads. Science. 1981 Sep 18;213(4514):1383–1385. doi: 10.1126/science.6455737. [DOI] [PubMed] [Google Scholar]
  18. Pollard T. D. Electron microscopy of synthetic myosin filaments. Evidence for cross-bridge. Flexibility and copolymer formation. J Cell Biol. 1975 Oct;67(1):93–104. doi: 10.1083/jcb.67.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sellers J. R., Chock P. B., Adelstein R. S. The apparently negatively cooperative phosphorylation of smooth muscle myosin at low ionic strength is related to its filamentous state. J Biol Chem. 1983 Dec 10;258(23):14181–14188. [PubMed] [Google Scholar]
  20. Sellers J. R., Eisenberg E., Adelstein R. S. The binding of smooth muscle heavy meromyosin to actin in the presence of ATP. Effect of phosphorylation. J Biol Chem. 1982 Dec 10;257(23):13880–13883. [PubMed] [Google Scholar]
  21. Sellers J. R., Pato M. D., Adelstein R. S. Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem. 1981 Dec 25;256(24):13137–13142. [PubMed] [Google Scholar]
  22. Sheetz M. P., Chasan R., Spudich J. A. ATP-dependent movement of myosin in vitro: characterization of a quantitative assay. J Cell Biol. 1984 Nov;99(5):1867–1871. doi: 10.1083/jcb.99.5.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  24. Sherry J. M., Górecka A., Aksoy M. O., Dabrowska R., Hartshorne D. J. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry. 1978 Oct 17;17(21):4411–4418. doi: 10.1021/bi00614a009. [DOI] [PubMed] [Google Scholar]
  25. Siegman M. J., Butler T. M., Mooers S. U., Michalek A. Ca2+ can affect Vmax without changes in myosin light chain phosphorylation in smooth muscle. Pflugers Arch. 1984 Aug;401(4):385–390. doi: 10.1007/BF00584340. [DOI] [PubMed] [Google Scholar]
  26. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Silver P. J., Stull J. T. Quantitation of myosin light chain phosphorylation in small tissue samples. J Biol Chem. 1982 Jun 10;257(11):6137–6144. [PubMed] [Google Scholar]
  28. Sobieszek A., Small J. V. Regulation of the actin-myosin interaction in vertebrate smooth muscle: activation via a myosin light-chain kinase and the effect of tropomyosin. J Mol Biol. 1977 Jun 5;112(4):559–576. doi: 10.1016/s0022-2836(77)80164-2. [DOI] [PubMed] [Google Scholar]
  29. Somlyo A. V., Butler T. M., Bond M., Somlyo A. P. Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle. Nature. 1981 Dec 10;294(5841):567–569. doi: 10.1038/294567a0. [DOI] [PubMed] [Google Scholar]
  30. Suzuki H., Onishi H., Takahashi K., Watanabe S. Structure and function of chicken gizzard myosin. J Biochem. 1978 Dec;84(6):1529–1542. doi: 10.1093/oxfordjournals.jbchem.a132278. [DOI] [PubMed] [Google Scholar]
  31. Vale R. D., Szent-Gyorgyi A. G., Sheetz M. P. Movement of scallop myosin on Nitella actin filaments: regulation by calcium. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6775–6778. doi: 10.1073/pnas.81.21.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walsh M. P., Bridenbaugh R., Hartshorne D. J., Kerrick W. G. Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+. J Biol Chem. 1982 Jun 10;257(11):5987–5990. [PubMed] [Google Scholar]
  33. Warshaw D. M., Fay F. S. Tension transients in single isolated smooth muscle cells. Science. 1983 Mar 25;219(4591):1438–1441. doi: 10.1126/science.6828870. [DOI] [PubMed] [Google Scholar]
  34. de Lanerolle P., Condit J. R., Jr, Tanenbaum M., Adelstein R. S. Myosin phosphorylation, agonist concentration and contraction of tracheal smooth muscle. Nature. 1982 Aug 26;298(5877):871–872. doi: 10.1038/298871a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES