Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Nov 1;101(5):1817–1825. doi: 10.1083/jcb.101.5.1817

Localization of cell surface glycoproteins in membrane domains associated with the underlying filament network

PMCID: PMC2113983  PMID: 3902855

Abstract

To visualize the localization of cell surface constituents in relation to the plasma membrane-associated filament network, we developed a method based on a combination of immunogold labeling and dry-cleaving. For labeling we used trinitrophenyl-derivatized ligand, anti-TNP antibodies, and protein A-coated colloidal gold. Dry-cleaving (Mesland, D. A. M., H. Spiele, and E. Roos, 1981, Exp. Cell Res., 132: 169-184) involves cleavage of lightly fixed critical point-dried cells by means of adhesive tape. Since cells cleave close to the cell surface, the remaining layer is thin enough to be examined in transmission electron microscopy. Using this method, we studied concanavalin A-binding constituents on the medium-facing surface of H35 hepatoma cells. The distribution of the gold particles, which was partly dispersed and partly patchy, coincided strikingly with membrane-associated filaments, and label was virtually absent from areas overlying openings in the filament network. In stereo pairs we observed the label to be localized to areas of somewhat enhanced electron density at the plane of the membrane. These areas were interconnected in a pattern congruent with the filament network. Preliminary observations on wheat germ agglutinin receptors on the hepatoma cells as well as concanavalin A receptors on isolated hepatocytes yielded comparable results. It thus appears that surface glycoproteins, although seemingly randomly distributed as observed in thin sections, may actually be localized to particular membrane domains associated with underlying filaments.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avnur Z., Small J. V., Geiger B. Actin-independent association of vinculin with the cytoplasmic aspect of the plasma membrane in cell-contact areas. J Cell Biol. 1983 Jun;96(6):1622–1630. doi: 10.1083/jcb.96.6.1622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Nagpal M. L., Balazovich K., Guerriero V., Means A. R. Association of myosin light chain kinase with lymphocyte membrane-cytoskeleton complex. J Cell Biol. 1982 Dec;95(3):793–797. doi: 10.1083/jcb.95.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  6. Brown S. S., Malinoff H. L., Wicha M. S. Connectin: cell surface protein that binds both laminin and actin. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5927–5930. doi: 10.1073/pnas.80.19.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burridge K., Mangeat P. An interaction between vinculin and talin. Nature. 1984 Apr 19;308(5961):744–746. doi: 10.1038/308744a0. [DOI] [PubMed] [Google Scholar]
  8. Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
  9. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  10. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  11. Glenney J. R., Jr, Glenney P. Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution. Cell. 1983 Sep;34(2):503–512. doi: 10.1016/0092-8674(83)90383-5. [DOI] [PubMed] [Google Scholar]
  12. Glenney J. R., Jr, Glenney P. The microvillus 110K cytoskeletal protein is an integral membrane protein. Cell. 1984 Jul;37(3):743–751. doi: 10.1016/0092-8674(84)90410-0. [DOI] [PubMed] [Google Scholar]
  13. Gratzer W. B. The red cell membrane and its cytoskeleton. Biochem J. 1981 Jul 15;198(1):1–8. doi: 10.1042/bj1980001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henis Y. I., Elson E. L. Inhibition of the mobility of mouse lymphocyte surface immunoglobulins by locally bound concanavalin A. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1072–1076. doi: 10.1073/pnas.78.2.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirokawa N., Tilney L. G. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol. 1982 Oct;95(1):249–261. doi: 10.1083/jcb.95.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Howe C. L., Mooseker M. S. Characterization of the 110-kdalton actin-calmodulin-, and membrane-binding protein from microvilli of intestinal epithelial cells. J Cell Biol. 1983 Oct;97(4):974–985. doi: 10.1083/jcb.97.4.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jain M. K., White H. B., 3rd Long-range order in biomembranes. Adv Lipid Res. 1977;15:1–60. doi: 10.1016/b978-0-12-024915-2.50007-4. [DOI] [PubMed] [Google Scholar]
  19. Jesaitis A. J., Naemura J. R., Sklar L. A., Cochrane C. G., Painter R. G. Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high-affinity ligand-receptor complexes in transient association with cytoskeleton. J Cell Biol. 1984 Apr;98(4):1378–1387. doi: 10.1083/jcb.98.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jost P., Brooks U. J., Griffith O. H. Fluidity of phospholipid bilayers and membranes after exposure to osmium tetroxide and gluteraldehyde. J Mol Biol. 1973 May 15;76(2):313–318. doi: 10.1016/0022-2836(73)90394-x. [DOI] [PubMed] [Google Scholar]
  21. Jung G., Helm R. M., Carraway C. A., Carraway K. L. Mechanism of concanavalin A-induced anchorage of the major cell surface glycoproteins to the submembrane cytoskeleton in 13762 ascites mammary adenocarcinoma cells. J Cell Biol. 1984 Jan;98(1):179–187. doi: 10.1083/jcb.98.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Klausner R. D. The concept of lipid domains in membranes. J Cell Biol. 1982 Jul;94(1):1–6. doi: 10.1083/jcb.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koch G. L., Smith M. J. An association between actin and the major histocompatibility antigen H-2. Nature. 1978 May 25;273(5660):274–278. doi: 10.1038/273274a0. [DOI] [PubMed] [Google Scholar]
  24. Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Levine J., Willard M. Redistribution of fodrin (a component of the cortical cytoplasm) accompanying capping of cell surface molecules. Proc Natl Acad Sci U S A. 1983 Jan;80(1):191–195. doi: 10.1073/pnas.80.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mangeat P. H., Burridge K. Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: relation to cytoskeletal structures. J Cell Biol. 1984 Apr;98(4):1363–1377. doi: 10.1083/jcb.98.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mangeat P., Burridge K. Actin-membrane interaction in fibroblasts: what proteins are involved in this association? J Cell Biol. 1984 Jul;99(1 Pt 2):95s–103s. doi: 10.1083/jcb.99.1.95s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mescher M. F., Jose M. J., Balk S. P. Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells. Nature. 1981 Jan 15;289(5794):139–144. doi: 10.1038/289139a0. [DOI] [PubMed] [Google Scholar]
  29. Mesland D. A., Spiele H. Brief extraction with detergent induces the appearance of many plasma membrane-associated microtubules in hepatocytic cells. J Cell Sci. 1984 Jun;68:113–137. doi: 10.1242/jcs.68.1.113. [DOI] [PubMed] [Google Scholar]
  30. Mesland D. A., Spiele H. Plasma membrane-associate filament systems in cultured cells visualized by dry-cleaving. J Cell Sci. 1983 Nov;64:351–364. doi: 10.1242/jcs.64.1.351. [DOI] [PubMed] [Google Scholar]
  31. Mesland D. A., Spiele H., Roos E. Membrane-associated cytoskeleton and coated vesicles in cultured hepatocytes visualized by dry-cleaving. Exp Cell Res. 1981 Mar;132(1):169–184. doi: 10.1016/0014-4827(81)90093-8. [DOI] [PubMed] [Google Scholar]
  32. Nelson W. J., Colaço C. A., Lazarides E. Involvement of spectrin in cell-surface receptor capping in lymphocytes. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1626–1630. doi: 10.1073/pnas.80.6.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Petrini M., Emerson D. L., Galbraith R. M. Linkage between surface immunoglobulin and cytoskeleton of B lymphocytes may involve Gc protein. Nature. 1983 Nov 3;306(5938):73–74. doi: 10.1038/306073a0. [DOI] [PubMed] [Google Scholar]
  34. Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
  35. Schlessinger J., Axelrod D., Koppel D. E., Webb W. W., Elson E. L. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science. 1977 Jan 21;195(4275):307–309. doi: 10.1126/science.556653. [DOI] [PubMed] [Google Scholar]
  36. Sheetz M. P., Schindler M., Koppel D. E. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature. 1980 Jun 12;285(5765):510–511. doi: 10.1038/285510a0. [DOI] [PubMed] [Google Scholar]
  37. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sundqvist K. G., Ehrnst A. Cytoskeletal control of surface membrane mobility. Nature. 1976 Nov 18;264(5583):226–231. doi: 10.1038/264226a0. [DOI] [PubMed] [Google Scholar]
  40. Tank D. W., Wu E. S., Webb W. W. Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol. 1982 Jan;92(1):207–212. doi: 10.1083/jcb.92.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tarone G., Ferracini R., Galetto G., Comoglio P. A cell surface integral membrane glycoprotein of 85,000 mol wt (gp85) associated with triton X-100-insoluble cell skeleton. J Cell Biol. 1984 Aug;99(2):512–519. doi: 10.1083/jcb.99.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tsukita S., Tsukita S., Ishikawa H. Cytoskeletal network underlying the human erythrocyte membrane. Thin-section electron microscopy. J Cell Biol. 1980 Jun;85(3):567–576. doi: 10.1083/jcb.85.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van Zoelen E. J., Zwaal R. F., Reuvers R. A., Demel R. A., Van Deenen L. L. Evidence for the preferential interaction of glycophorin with negatively charged phospholipids. Biochim Biophys Acta. 1977 Feb 4;464(3):482–492. doi: 10.1016/0005-2736(77)90024-4. [DOI] [PubMed] [Google Scholar]
  44. Vaz W. L., Jacobson K., Wu E. S., Derzko Z. Lateral mobility of an amphipathic apolipoprotein, ApoC-III, bound to phosphatidylcholine bilayers with and without cholesterol. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5645–5649. doi: 10.1073/pnas.76.11.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Woda B. A., McFadden M. L. Ligand-induced association of rat lymphocyte membrane proteins with the detergent-insoluble lymphocyte cytoskeletal matrix. J Immunol. 1983 Oct;131(4):1917–1919. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES