Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Dec 1;101(6):2355–2365. doi: 10.1083/jcb.101.6.2355

Proteoglycan biosynthesis in chondrocytes: protein A-gold localization of proteoglycan protein core and chondroitin sulfate within Golgi subcompartments

PMCID: PMC2113984  PMID: 3934179

Abstract

The intracellular pathway of cartilage proteoglycan biosynthesis was investigated in isolated chondrocytes using a protein A-gold electron microscopy immunolocalization procedure. Proteoglycans contain a protein core to which chondroitin sulfate and keratan sulfate chains and oligosaccharides are added in posttranslational processing. Specific antibodies have been used in this study to determine separately the distribution of the protein core and chondroitin sulfate components. In normal chondrocytes, proteoglycan protein core was readily localized only in smooth-membraned vesicles which co-labeled with ricin, indicating them to be galactose-rich medial/trans-Golgi cisternae, whereas there was only a low level of labeling in the rough endoplasmic reticulum. Chondroitin sulfate was also localized in medial/trans-Golgi cisternae of control chondrocytes but was not detected in other cellular compartments. In cells treated with monensin (up to 1.0 microM), which strongly inhibits proteoglycan secretion (Burditt, L.J., A. Ratcliffe, P. R. Fryer, and T. Hardingham, 1985, Biochim. Biophys. Acta., 844:247-255), there was greatly increased intracellular localization of proteoglycan protein core in both ricin- positive vesicles, and in ricin-negative vesicles (derived from cis- Golgi stacks) and in the distended rough endoplasmic reticulum. Chondroitin sulfate also increased in abundance after monensin treatment, but continued to be localized only in ricin-positive vesicles. The results suggested that the synthesis of chondroitin sulfate on proteoglycan only occurs in medial/trans-Golgi cisternae as a late event in proteoglycan biosynthesis. This also suggests that glycosaminoglycan synthesis on proteoglycans takes place in a compartment in common with events in the biosynthesis of both O-linked and N-linked oligosaccharides on other secretory glycoproteins.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendayan M. Double immunocytochemical labeling applying the protein A-gold technique. J Histochem Cytochem. 1982 Jan;30(1):81–85. doi: 10.1177/30.1.6172469. [DOI] [PubMed] [Google Scholar]
  2. Bendayan M., Orstavik T. B. Immunocytochemical localization of kallikrein in the rat exocrine pancreas. J Histochem Cytochem. 1982 Jan;30(1):58–66. doi: 10.1177/30.1.6915073. [DOI] [PubMed] [Google Scholar]
  3. Bendayan M., Shore G. C. Immunocytochemical localization of mitochondrial proteins in the rat hepatocyte. J Histochem Cytochem. 1982 Feb;30(2):139–147. doi: 10.1177/30.2.7061817. [DOI] [PubMed] [Google Scholar]
  4. Bonnet F., Dunham D. G., Hardingham T. E. Structure and interactions of cartilage proteoglycan binding region and link protein. Biochem J. 1985 May 15;228(1):77–85. doi: 10.1042/bj2280077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burditt L. J., Ratcliffe A., Fryer P. R., Hardingham T. E. The intracellular localisation of proteoglycans and their accumulation in chondrocytes treated with monensin. Biochim Biophys Acta. 1985 Feb 21;844(2):247–255. doi: 10.1016/0167-4889(85)90097-7. [DOI] [PubMed] [Google Scholar]
  6. Couchman J. R., Caterson B., Christner J. E., Baker J. R. Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature. 1984 Feb 16;307(5952):650–652. doi: 10.1038/307650a0. [DOI] [PubMed] [Google Scholar]
  7. Dunphy W. G., Rothman J. E. Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J Cell Biol. 1983 Jul;97(1):270–275. doi: 10.1083/jcb.97.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elhammer A., Kornfeld S. Two enzymes involved in the synthesis of O-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells. J Cell Biol. 1984 Jul;99(1 Pt 1):327–331. doi: 10.1083/jcb.99.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fellini S. A., Hascall V. C., Kimura J. H. Localization of proteoglycan core protein in subcellular fractions isolated from rat chondrosarcoma chondrocytes. J Biol Chem. 1984 Apr 10;259(7):4634–4641. [PubMed] [Google Scholar]
  10. Fryer P. R., Wells C., Ratcliffe A. Technical difficulties overcome in the use of Lowicryl 4KM EM embedding resin. Histochemistry. 1983;77(1):141–143. doi: 10.1007/BF00496645. [DOI] [PubMed] [Google Scholar]
  11. GODMAN G. C., LANE N. ON THE SITE OF SULFATION IN THE CHONDROCYTE. J Cell Biol. 1964 Jun;21:353–366. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geetha-Habib M., Campbell S. C., Schwartz N. B. Subcellular localization of the synthesis and glycosylation of chondroitin sulfate proteoglycan core protein. J Biol Chem. 1984 Jun 10;259(11):7300–7310. [PubMed] [Google Scholar]
  13. Griffiths G., Brands R., Burke B., Louvard D., Warren G. Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J Cell Biol. 1982 Dec;95(3):781–792. doi: 10.1083/jcb.95.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths G., Quinn P., Warren G. Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J Cell Biol. 1983 Mar;96(3):835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hardingham T. E. Control of structural diversity in proteoglycans. Prog Clin Biol Res. 1982;102 Pt A:423–434. [PubMed] [Google Scholar]
  16. Hardingham T. E., Muir H. The specific interaction of hyaluronic acid with cartillage proteoglycans. Biochim Biophys Acta. 1972 Sep 15;279(2):401–405. doi: 10.1016/0304-4165(72)90160-2. [DOI] [PubMed] [Google Scholar]
  17. Hardingham T. E. The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem J. 1979 Jan 1;177(1):237–247. doi: 10.1042/bj1770237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hardingham T., Burditt L., Ratcliffe A. Studies on the synthesis, secretion and assembly of proteoglycan aggregates by chondrocytes. Prog Clin Biol Res. 1984;151:17–29. [PubMed] [Google Scholar]
  19. Hardingham T. Proteoglycans: their structure, interactions and molecular organization in cartilage. Biochem Soc Trans. 1981 Dec;9(6):489–497. doi: 10.1042/bst0090489. [DOI] [PubMed] [Google Scholar]
  20. Hascall V. C., Sajdera S. W. Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J Biol Chem. 1970 Oct 10;245(19):4920–4930. [PubMed] [Google Scholar]
  21. Heinegård D. Polydispersity of cartilage proteoglycans. Structural variations with size and buoyant density of the molecules. J Biol Chem. 1977 Mar 25;252(6):1980–1989. [PubMed] [Google Scholar]
  22. Hoffmann H. P., Schwartz N. B., Rodén L., Prockop D. J. Location of xylosyltransferase in the cisternae of the rough endoplasmic reticulum of embryonic cartilage cells. Connect Tissue Res. 1984;12(2):151–163. doi: 10.3109/03008208408992780. [DOI] [PubMed] [Google Scholar]
  23. Kajiwara T., Tanzer M. L. Undersulfated proteoglycans are induced by the ionophore monensin: study of possible mechanisms. Arch Biochem Biophys. 1982 Mar;214(1):51–55. doi: 10.1016/0003-9861(82)90007-8. [DOI] [PubMed] [Google Scholar]
  24. Kimata K., Okayama M., Suzuki S., Suzuki I., Hoshino M. Nascent mucopolysaccharides attached to the Golgi membrane of chondrocytes. Biochim Biophys Acta. 1971 Jun 22;237(3):606–610. doi: 10.1016/0304-4165(71)90282-0. [DOI] [PubMed] [Google Scholar]
  25. Kimura J. H., Caputo C. B., Hascall V. C. The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 May 10;256(9):4368–4376. [PubMed] [Google Scholar]
  26. Kimura J. H., Hardingham T. E., Hascall V. C. Assembly of newly synthesized proteoglycan and link protein into aggregates in cultures of chondrosarcoma chondrocytes. J Biol Chem. 1980 Aug 10;255(15):7134–7143. [PubMed] [Google Scholar]
  27. Kimura J. H., Hardingham T. E., Hascall V. C., Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 25;254(8):2600–2609. [PubMed] [Google Scholar]
  28. Kimura J. H., Lohmander L. S., Hascall V. C. Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma. J Cell Biochem. 1984;26(4):261–278. doi: 10.1002/jcb.240260406. [DOI] [PubMed] [Google Scholar]
  29. Kimura J. H., Thonar E. J., Hascall V. C., Reiner A., Poole A. R. Identification of core protein, an intermediate in proteoglycan biosynthesis in cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 Aug 10;256(15):7890–7897. [PubMed] [Google Scholar]
  30. Käriäinen L., Hashimoto K., Saraste J., Virtanen I., Penttinen K. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. J Cell Biol. 1980 Dec;87(3 Pt 1):783–791. doi: 10.1083/jcb.87.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ledger P. W., Uchida N., Tanzer M. L. Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J Cell Biol. 1980 Dec;87(3 Pt 1):663–671. doi: 10.1083/jcb.87.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mitchell D., Hardingham T. Monensin inhibits synthesis of proteoglycan, but not of hyaluronate, in chondrocytes. Biochem J. 1982 Jan 15;202(1):249–254. doi: 10.1042/bj2020249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mitchell D., Hardingham T. The effects of cycloheximide on the biosynthesis and secretion of proteoglycans by chondrocytes in culture. Biochem J. 1981 May 15;196(2):521–529. doi: 10.1042/bj1960521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nishimoto S. K., Kajiwara T., Ledger P. W., Tanzer M. L. Effects of the ionophore monensin on type II collagen and proteoglycan synthesis and secretion by cultured chondrocytes. J Biol Chem. 1982 Oct 10;257(19):11712–11716. [PubMed] [Google Scholar]
  35. Nishimoto S. K., Kajiwara T., Tanzer M. L. Proteoglycan core protein is accumulated in cultured chondrocytes in the presence of the ionophore monensin. J Biol Chem. 1982 Sep 25;257(18):10558–10561. [PubMed] [Google Scholar]
  36. Pacifici M., Soltesz R., Thal G., Shanley D. J., Boettiger D., Holtzer H. Immunological characterization of the major chick cartilage proteoglycan and its intracellular localization in cultured chondroblasts: a comparison with Type II procollagen. J Cell Biol. 1983 Dec;97(6):1724–1736. doi: 10.1083/jcb.97.6.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pesonen M., Käriäinen L. Incomplete complex oligosaccharides in semliki forest virus envelope proteins arrested within the cell in the presence of monensin. J Mol Biol. 1982 Jun 25;158(2):213–230. doi: 10.1016/0022-2836(82)90430-2. [DOI] [PubMed] [Google Scholar]
  38. Ratcliffe A., Fryer P. R., Hardingham T. E. The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J Histochem Cytochem. 1984 Feb;32(2):193–201. doi: 10.1177/32.2.6363519. [DOI] [PubMed] [Google Scholar]
  39. Ratcliffe A., Hardingham T. Cartilage proteoglycan binding region and link protein. Radioimmunoassays and the detection of masked determinants in aggregates. Biochem J. 1983 Aug 1;213(2):371–378. doi: 10.1042/bj2130371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Robinson H. C., Brett M. J., Tralaggan P. J., Lowther D. A., Okayama M. The effect of D-xylose, beta-D-xylosides and beta-D-galactosides on chondroitin sulphate biosynthesis in embryonic chicken cartilage. Biochem J. 1975 Apr;148(1):25–34. doi: 10.1042/bj1480025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Robinson J. A., Robinson H. C. Control of chondroitin sulphate biosynthesis. beta-D-Xylopyranosides as substrates for UDP-galactose: D-xylose transferase from embryonic-chicken cartilage. Biochem J. 1981 Mar 15;194(3):839–846. doi: 10.1042/bj1940839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
  43. Roth J., Berger E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982 Apr;93(1):223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roth J. Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation. J Cell Biol. 1984 Feb;98(2):399–406. doi: 10.1083/jcb.98.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rothman J. E., Miller R. L., Urbani L. J. Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations. J Cell Biol. 1984 Jul;99(1 Pt 1):260–271. doi: 10.1083/jcb.99.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rothman J. E. The golgi apparatus: two organelles in tandem. Science. 1981 Sep 11;213(4513):1212–1219. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
  47. Schwarz J. K., Capasso J. M., Hirschberg C. B. Translocation of adenosine 3'-phosphate 5'-phosphosulfate into rat liver Golgi vesicles. J Biol Chem. 1984 Mar 25;259(6):3554–3559. [PubMed] [Google Scholar]
  48. Slot J. W., Geuze H. J. Immunoelectron microscopic exploration of the Golgi complex. J Histochem Cytochem. 1983 Aug;31(8):1049–1056. doi: 10.1177/31.8.6863900. [DOI] [PubMed] [Google Scholar]
  49. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Strous G. J., Lodish H. F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell. 1980 Dec;22(3):709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
  51. Strous G. J., Van Kerkhof P., Willemsen R., Geuze H. J., Berger E. G. Transport and topology of galactosyltransferase in endomembranes of HeLa cells. J Cell Biol. 1983 Sep;97(3):723–727. doi: 10.1083/jcb.97.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tajiri K., Uchida N., Tanzer M. L. Undersulfated proteoglycans are secreted by cultured chondrocytes in the presence of the ionophore monensin. J Biol Chem. 1980 Jul 10;255(13):6036–6039. [PubMed] [Google Scholar]
  53. Tang L. H., Rosenberg L., Reiner A., Poole A. R. Proteoglycans from bovine nasal cartilage. Properties of a soluble form of link protein. J Biol Chem. 1979 Oct 25;254(20):10523–10531. [PubMed] [Google Scholar]
  54. Tartakoff A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983 Apr;32(4):1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  55. Tartakoff A. M., Vassalli P. Lectin-binding sites as markers of Golgi subcompartments: proximal-to-distal maturation of oligosaccharides. J Cell Biol. 1983 Oct;97(4):1243–1248. doi: 10.1083/jcb.97.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tartakoff A. M., Vassalli P. Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the golgi complex. J Exp Med. 1977 Nov 1;146(5):1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tartakoff A., Vassalli P., Détraz M. Comparative studies of intracellular transport of secretory proteins. J Cell Biol. 1978 Dec;79(3):694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tartakoff A., Vassalli P. Plasma cell immunoglobulin M molecules. Their biosynthesis, assembly, and intracellular transport. J Cell Biol. 1979 Nov;83(2 Pt 1):284–299. doi: 10.1083/jcb.83.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Thonar E. J., Kimura J. H., Hascall V. C., Poole A. R. Enzyme-linked immunosorbent assay analyses of the hyaluronate-binding region and the link protein of proteoglycan aggregate. J Biol Chem. 1982 Dec 10;257(23):14173–14180. [PubMed] [Google Scholar]
  60. Treadwell B. V., Mankin D. P., Ho P. K., Mankin H. J. Cell-free synthesis of cartilage proteins: partial identification of proteoglycan core and link proteins. Biochemistry. 1980 May 13;19(10):2269–2275. doi: 10.1021/bi00551a043. [DOI] [PubMed] [Google Scholar]
  61. Uchida N., Smilowitz H., Tanzer M. L. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1868–1872. doi: 10.1073/pnas.76.4.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Upholt W. B., Vertel B. M., Dorfman A. Translation and characterization of messenger RNAs in differentiating chicken cartilage. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4847–4851. doi: 10.1073/pnas.76.10.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Vertel B. M., Barkman L. L. Immunofluorescence studies of chondroitin sulfate proteoglycan biosynthesis: the use of monoclonal antibodies. Coll Relat Res. 1984 Jan;4(1):1–20. doi: 10.1016/s0174-173x(84)80025-4. [DOI] [PubMed] [Google Scholar]
  64. Vertel B. M., Dorfman A. An immunohistochemical study of extracellular matrix formation during chondrogenesis. Dev Biol. 1978 Jan;62(1):1–12. doi: 10.1016/0012-1606(78)90088-x. [DOI] [PubMed] [Google Scholar]
  65. Vertel B. M., Dorfman A. Simultaneous localization of type II collagen and core protein of chondroitin sulfate proteoglycan in individual chondrocytes. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1261–1264. doi: 10.1073/pnas.76.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Vertel B. M., Upholt W. B., Dorfman A. Cell-free translation of messenger RNA for chondroitin sulphate proteoglycan core protein in rat cartilage. Biochem J. 1984 Jan 1;217(1):259–263. doi: 10.1042/bj2170259. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES