Abstract
We have used the isolated planar cortex of sea urchin eggs to examine the role of osmotic forces in exocytosis by morphological and physiological methods. Electron micrographs of rotary-shadowed replicas show an en face view of exocytosis and demonstrate fusion of cortical vesicles to the underlying oolemma upon addition of calcium. Freeze- fracture replicas of rapidly frozen cortices reveal specialized attachment sites between cortical vesicles and the oolemma, and between the cortical vesicles themselves. We describe a novel light scattering assay for the kinetics of fusion which allows rapid changes of solutions and monitors exocytosis in real time. The rate and extent of fusion are found to be calcium dependent. The removal of calcium halts exocytosis. The validation of exocytosis in this system and development of tools for kinetic analysis allowed us to test predictions of the osmotic hypothesis of exocytosis: hyperosmotic media should inhibit exocytosis; calcium should cause vesicular swelling. Cortical vesicles were found to be permeant to sucrose, glucose, and urea. In media made hyperosmotic with 1.7 M sucrose, cortical vesicles were seen to shrink. Addition of calcium in hyperosmotic media led to a 10-fold decrease in the rate of exocytosis compared with the isotonic rate. The rate, while triggered by calcium, was no longer calcium-dependent. This slowing of exocytosis allowed us to photograph the swelling of cortical vesicles caused by calcium. Removal of calcium had no effect on subsequent exocytosis. Return of cortices to isotonic medium without calcium led to immediate exocytosis. These results are consistent with the idea that swelling of cortical vesicles is required for fusion of biological membranes.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggeler J., Takemura R., Werb Z. High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages. J Cell Biol. 1983 Nov;97(5 Pt 1):1452–1458. doi: 10.1083/jcb.97.5.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akabas M. H., Cohen F. S., Finkelstein A. Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J Cell Biol. 1984 Mar;98(3):1063–1071. doi: 10.1083/jcb.98.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Whitaker M. J. Influence of ATP and calcium on the cortical reaction in sea urchin eggs. Nature. 1978 Nov 30;276(5687):513–515. doi: 10.1038/276513a0. [DOI] [PubMed] [Google Scholar]
- Boyles J., Bainton D. F. Changing patterns of plasma membrane-associated filaments during the initial phases of polymorphonuclear leukocyte adherence. J Cell Biol. 1979 Aug;82(2):347–368. doi: 10.1083/jcb.82.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown E. M., Pazoles C. J., Creutz C. E., Aurbach G. D., Pollard H. B. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc Natl Acad Sci U S A. 1978 Feb;75(2):876–880. doi: 10.1073/pnas.75.2.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll E. J., Jr, Epel D. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev Biol. 1975 May;44(1):22–32. doi: 10.1016/0012-1606(75)90373-5. [DOI] [PubMed] [Google Scholar]
- Chandler D. E., Heuser J. Membrane fusion during secretion: cortical granule exocytosis in sex urchin eggs as studied by quick-freezing and freeze-fracture. J Cell Biol. 1979 Oct;83(1):91–108. doi: 10.1083/jcb.83.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen F. S., Akabas M. H., Finkelstein A. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science. 1982 Jul 30;217(4558):458–460. doi: 10.1126/science.6283637. [DOI] [PubMed] [Google Scholar]
- Cohen F. S., Akabas M. H., Zimmerberg J., Finkelstein A. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J Cell Biol. 1984 Mar;98(3):1054–1062. doi: 10.1083/jcb.98.3.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen F. S., Zimmerberg J., Finkelstein A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J Gen Physiol. 1980 Mar;75(3):251–270. doi: 10.1085/jgp.75.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englert D. F., Perlman R. L. Permeant anions are not required for norepinephrine secretion from pheochromocytoma cells. Biochim Biophys Acta. 1981 Apr 17;674(1):136–143. doi: 10.1016/0304-4165(81)90355-x. [DOI] [PubMed] [Google Scholar]
- Epel D., Weaver A. M., Muchmore A. V., Schimke R. T. Beta-1,3-glucanase of sea urchin eggs: release from particles at fertilization. Science. 1969 Jan 17;163(3864):294–296. doi: 10.1126/science.163.3864.294. [DOI] [PubMed] [Google Scholar]
- Haggerty J. G., Jackson R. C. Release of granule contents from sea urchin egg cortices. New assay procedures and inhibition by sulfhydryl-modifying reagents. J Biol Chem. 1983 Feb 10;258(3):1819–1825. [PubMed] [Google Scholar]
- Hampton R. Y., Holz R. W. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J Cell Biol. 1983 Apr;96(4):1082–1088. doi: 10.1083/jcb.96.4.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachadorian W. A., Muller J., Finkelstein A. Role of osmotic forces in exocytosis: studies of ADH-induced fusion in toad urinary bladder. J Cell Biol. 1981 Nov;91(2 Pt 1):584–588. doi: 10.1083/jcb.91.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachar B. Asymmetric illumination contrast: a method of image formation for video light microscopy. Science. 1985 Feb 15;227(4688):766–768. doi: 10.1126/science.3969565. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
- Longo F. J. Morphological features of the surface of the sea urchin (Arbacia punctulata) egg: oolemma-cortical granule association. Dev Biol. 1981 May;84(1):173–182. doi: 10.1016/0012-1606(81)90381-x. [DOI] [PubMed] [Google Scholar]
- Moy G. W., Kopf G. S., Gache C., Vacquier V. D. Calcium-mediated release of glucanase activity from cortical granules of sea urchin eggs. Dev Biol. 1983 Dec;100(2):267–274. doi: 10.1016/0012-1606(83)90221-x. [DOI] [PubMed] [Google Scholar]
- Ornberg R. L., Reese T. S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. J Cell Biol. 1981 Jul;90(1):40–54. doi: 10.1083/jcb.90.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paweletz N., Mazia D. Fine structure of the mitotic cycle of unfertilized sea urchin eggs activated by ammoniacal sea water. Eur J Cell Biol. 1979 Oct;20(1):37–44. [PubMed] [Google Scholar]
- Pollard H. B., Tack-Goldman K., Pazoles C. J., Creutz C. E., Shulman N. R. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5295–5299. doi: 10.1073/pnas.74.12.5295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sardet C. The ultrastructure of the sea urchin egg cortex isolated before and after fertilization. Dev Biol. 1984 Sep;105(1):196–210. doi: 10.1016/0012-1606(84)90275-6. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Epel D. Cortical vesicle exocytosis in isolated cortices of sea urchin eggs: description of a turbidometric assay and its utilization in studying effects of different media on discharge. Dev Biol. 1983 Aug;98(2):327–337. doi: 10.1016/0012-1606(83)90363-9. [DOI] [PubMed] [Google Scholar]
- Sasaki H. Modulation of calcium sensitivity by a specific cortical protein during sea urchin egg cortical vesicle exocytosis. Dev Biol. 1984 Jan;101(1):125–135. doi: 10.1016/0012-1606(84)90123-4. [DOI] [PubMed] [Google Scholar]
- Satir B. H., Oberg S. G. Paramecium fusion rosettes: possible function as Ca2+ gates. Science. 1978 Feb 3;199(4328):536–538. doi: 10.1126/science.341312. [DOI] [PubMed] [Google Scholar]
- Schuel H., Kelly J. W., Berger E. R., Wilson W. L. Sulfated acid mucopolysaccharides in the cortical granules of eggs. Effects of quaternary ammonium salts on fertilization. Exp Cell Res. 1974 Sep;88(1):24–30. doi: 10.1016/0014-4827(74)90613-2. [DOI] [PubMed] [Google Scholar]
- Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suprynowicz F. A., Mazia D. Fluctuation of the Ca-sequestering activity of permeabilized sea urchin embryos during the cell cycle. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2389–2393. doi: 10.1073/pnas.82.8.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y., Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta. 1980 Jul;599(2):623–638. doi: 10.1016/0005-2736(80)90205-9. [DOI] [PubMed] [Google Scholar]
- Vacquier V. D. Dynamic changes of the egg cortex. Dev Biol. 1981 May;84(1):1–26. doi: 10.1016/0012-1606(81)90366-3. [DOI] [PubMed] [Google Scholar]
- Whitaker M. J., Baker P. F. Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effects of some inhibitors of cytoskeletal function. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):397–413. doi: 10.1098/rspb.1983.0047. [DOI] [PubMed] [Google Scholar]
- Zimmerberg J., Cohen F. S., Finkelstein A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J Gen Physiol. 1980 Mar;75(3):241–250. doi: 10.1085/jgp.75.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerberg J., Cohen F. S., Finkelstein A. Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein. Science. 1980 Nov 21;210(4472):906–908. doi: 10.1126/science.7434004. [DOI] [PubMed] [Google Scholar]
- Zimmerberg J., Whitaker M. Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature. 1985 Jun 13;315(6020):581–584. doi: 10.1038/315581a0. [DOI] [PubMed] [Google Scholar]
- Zucker R. S., Steinhardt R. A. Calcium activation of the cortical reaction in sea urchin eggs. Nature. 1979 Jun 28;279(5716):820–821. doi: 10.1038/279820a0. [DOI] [PubMed] [Google Scholar]