Abstract
We describe the reconstitution of exocytotic function through recombination of purified cortical secretory vesicles (CVs) and plasma membrane from sea urchin eggs. CVs were dislodged from a cell surface complex preparation by gentle homogenization in an isotonic dissociation buffer, and purified by differential centrifugation. CV- free plasma membrane fragments were obtained by mechanically dislodging CVs from cortical lawn (CL) preparations with a jet of CL isolation buffer. This procedure produced a "plasma membrane lawn" preparation, consisting of plasma membrane fragments attached via their vitelline layer (an extracellular glycocalyx) to a polylysine-coated microscope slide. When freshly prepared CVs were incubated with plasma membrane lawns, CVs reassociated with the cytoplasmic face of the plasma membrane, forming an exocytotically competent, reconstituted cortical lawn (RL). Exocytosis in RLs was monitored by phase-contrast microscopy, and quantitated with a sensitive microphotometric assay. Half-maximal exocytosis in RLs occurred at 18.5 microM free Ca2+; half- maximal exocytosis in control lawns occurred at 5.7 microM free Ca2+. Greater than 90% of the purified CVs that were not attached to a plasma membrane lawn remained intact when bathed in a buffer containing millimolar Ca2+. This result excluded the possibility that Ca2+- triggered CV lysis was responsible for our observations, and confirmed that the association of CVs with the plasma membrane was required for exocytosis in RLs. Evidence that the Ca2+-stimulated release of CV contents in CLs and RLs is the in vitro equivalent of exocytosis was obtained with an immunofluorescence-based vectorial transport assay, using an antiserum directed against a CV content protein: stimulation of RLs or partially CV-depleted CLs with Ca2+ resulted in fusion of the CV and plasma membranes, and the vectorial transport of CV contents from the cytoplasmic to the extracytoplasmic face of the egg plasma membrane.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Whitaker M. J. Influence of ATP and calcium on the cortical reaction in sea urchin eggs. Nature. 1978 Nov 30;276(5687):513–515. doi: 10.1038/276513a0. [DOI] [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgoyne R. D. Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta. 1984 Jun 25;779(2):201–216. doi: 10.1016/0304-4157(84)90009-1. [DOI] [PubMed] [Google Scholar]
- Carroll E. J., Jr, Epel D. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev Biol. 1975 May;44(1):22–32. doi: 10.1016/0012-1606(75)90373-5. [DOI] [PubMed] [Google Scholar]
- Chandler D. E. Exocytosis in vitro: ultrastructure of the isolated sea urchin egg cortex as seen in platinum replicas. J Ultrastruct Res. 1984 Nov;89(2):198–211. doi: 10.1016/s0022-5320(84)80015-5. [DOI] [PubMed] [Google Scholar]
- Decker G. L., Lennarz W. J. Sperm binding and fertilization envelope formation in a cell surface complex isolated from sea urchin eggs. J Cell Biol. 1979 Apr;81(1):92–103. doi: 10.1083/jcb.81.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decker S. J., Kinsey W. H. Characterization of cortical secretory vesicles from the sea urchin egg. Dev Biol. 1983 Mar;96(1):37–45. doi: 10.1016/0012-1606(83)90309-3. [DOI] [PubMed] [Google Scholar]
- Detering N. K., Decker G. L., Schmell E. D., Lennarz W. J. Isolation and characterization of plasma membrane-associated cortical granules from sea urchin eggs. J Cell Biol. 1977 Dec;75(3):899–914. doi: 10.1083/jcb.75.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haggerty J. G., Jackson R. C. Release of granule contents from sea urchin egg cortices. New assay procedures and inhibition by sulfhydryl-modifying reagents. J Biol Chem. 1983 Feb 10;258(3):1819–1825. [PubMed] [Google Scholar]
- Hylander B. L., Summers R. G. The effect of local anesthetics and ammonia on cortical granule-plasma membrane attachment in the sea urchin egg. Dev Biol. 1981 Aug;86(1):1–11. doi: 10.1016/0012-1606(81)90309-2. [DOI] [PubMed] [Google Scholar]
- Jackson R. C., Ward K. K., Haggerty J. G. Mild proteolytic digestion restores exocytotic activity to N-ethylmaleimide-inactivated cell surface complex from sea urchin eggs. J Cell Biol. 1985 Jul;101(1):6–11. doi: 10.1083/jcb.101.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalish D. I., Cohen C. M., Jacobson B. S., Branton D. Membrane isolation on polylysine-coated glass beads. Asymmetry of bound membrane. Biochim Biophys Acta. 1978 Jan 4;506(1):97–110. doi: 10.1016/0005-2736(78)90437-6. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
- Kopf G. S., Moy G. W., Vacquier V. D. Isolation and characterization of sea urchin egg cortical granules. J Cell Biol. 1982 Dec;95(3):924–932. doi: 10.1083/jcb.95.3.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARSH B. B. The estimation of inorganic phosphate in the presence of adenosine triphosphate. Biochim Biophys Acta. 1959 Apr;32:357–361. doi: 10.1016/0006-3002(59)90607-9. [DOI] [PubMed] [Google Scholar]
- McClay D. R., Fink R. D. Sea urchin hyalin: appearance and function in development. Dev Biol. 1982 Aug;92(2):285–293. doi: 10.1016/0012-1606(82)90175-0. [DOI] [PubMed] [Google Scholar]
- Moy G. W., Kopf G. S., Gache C., Vacquier V. D. Calcium-mediated release of glucanase activity from cortical granules of sea urchin eggs. Dev Biol. 1983 Dec;100(2):267–274. doi: 10.1016/0012-1606(83)90221-x. [DOI] [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Epel D. Cortical vesicle exocytosis in isolated cortices of sea urchin eggs: description of a turbidometric assay and its utilization in studying effects of different media on discharge. Dev Biol. 1983 Aug;98(2):327–337. doi: 10.1016/0012-1606(83)90363-9. [DOI] [PubMed] [Google Scholar]
- Sasaki H. Modulation of calcium sensitivity by a specific cortical protein during sea urchin egg cortical vesicle exocytosis. Dev Biol. 1984 Jan;101(1):125–135. doi: 10.1016/0012-1606(84)90123-4. [DOI] [PubMed] [Google Scholar]
- Schön E. A., Decker G. L. Ion-dependent stages of the cortical reaction in surface complexes isolated from Arbacia punctulata eggs. J Ultrastruct Res. 1981 Aug;76(2):191–201. doi: 10.1016/s0022-5320(81)80017-2. [DOI] [PubMed] [Google Scholar]
- Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
- Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
- Wessel G. M., Marchase R. B., McClay D. R. Ontogeny of the basal lamina in the sea urchin embryo. Dev Biol. 1984 May;103(1):235–245. doi: 10.1016/0012-1606(84)90025-3. [DOI] [PubMed] [Google Scholar]
- Whitaker M. J., Baker P. F. Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effects of some inhibitors of cytoskeletal function. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):397–413. doi: 10.1098/rspb.1983.0047. [DOI] [PubMed] [Google Scholar]